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Technical University of Catalunya, Barcelona, Spain
jl@gps.tsc.upc.edu, montse@gps.tsc.upc.edu

Abstract. Object localization and tracking are key issues in the analy-
sis of scenes for video surveillance or scene understanding applications.
This paper presents a contribution to the object tracking task in indoor
environments surveyed by multiple fixed cameras. The method proposed
uses a foreground separation process at each camera view. Then, a 3D-
foreground scene is modeled and discretized into voxels making use of
all the segmented views, preventing the difficulties of inter-object oc-
clusions in 2D trackers, and increasing the robustness for not having to
rely only in one view. The voxels are grouped into meaningful blobs,
whose colors are modeled for tracking purposes, using a novel voxel-
coloring technique that considers possible inter/intra-object occlusions.
Finally, color information together with other characteristic features of
3D object appearances are temporally tracked using a template-based
technique which takes into account all the features simultaneously in ac-
cordance with their respective variances. Extensive experiments dealing
with several hours of video sequences in real-world scenarios have been
conducted, showing a very promising performance.

1 Introduction

One of the important objectives of image and video analysis is the development of
accurate and robust tracking techniques for multiple moving objects in dynamic
and cluttered visual scenes. It is particularly desirable in the video surveillance
field where an automated system allows fast and efficient access to unforeseen
events that need to be attended by security guards or law enforcement officers.
It also enables tagging and indexing interesting scene activities / statistics in a
video database for future retrieval on demand. In addition, such systems are the
building blocks of higher-level intelligent vision-based or assisted information
analysis and management systems with a view to understanding the complex
actions, interactions, and abnormal behaviors of objects in the scene.

Vision-based surveillance systems can be classified in several different ways,
considering the environment in which they are designed to operate. In this paper
our focus is on processing videos captured by multiple fixed camera overlooking
indoor areas in visual monitoring scenarios.



Multiple camera surveillance has two key advantages over single camera sys-
tems. First, the occlusion problem automatically vanishes when using enough
cameras. And second, the process gains robustness for not having to rely only
in one camera.

There have been several attempts to fuse video information from different
cameras. Some approaches start with the assumption that the scene develops
in flat areas with large distances between objects and cameras. The tracking
becomes then only a problem of 2D localization in a plane. In such situations it
is commonplace to project tracking regions from one camera view to another [1].
The process, known as homography between images, can be employed to select
which projection is used based on the localization of the object, in order to avoid
occlusions present in a camera but not in others.

Although homographic transformations between images have proved to solve
some problems, they fail when the assumptions of large distances and flat areas
do not hold, such as indoor scenarios. To overcome this limitation, there have
been some works which try to do a 2D-based tracking and then fuse the results
into a 3D space; and others which try to fuse 3D features first, to use them later
in a single tracker.

1.1 Our Approach

We focus on the second approach. In particular, we propose using the camera
views to extract foreground voxels, i.e., the smallest distinguishable box-shaped
part of a three-dimensional image. Indeed, foreground voxels provide enough
information for precise object detection and tracking. Furthermore, there are
several alternatives for the voxel extraction process, such as laser range scanners
that although providing very precise volumetric information, suffer from very low
scanning rates, making them unsuitable for our application. Other non-invasive
reconstruction methods use intensity-based techniques [2] that compute corre-
spondences across images and then recover the 3D structure by triangulation
and surface fitting. Unfortunately, for effective operation of these techniques the
camera views must be close so that the correspondence is effective. Besides, a
huge number of points have to be usually matched and fused into a consistent
model, making it a slow and difficult task.

Instead, we propose using shape from silhouette, which is another non-invasive
and faster technique. A calibrated [3] set of cameras must be placed around the
scene of interest, and the camera pixels must be provided as either part of the
shape (foreground) or background. Each of the foreground camera point defines
a ray in the scene space that intersects the object at some unknown depth along
this ray; the union of these visual rays for all points in the silhouette defines
a generalized cone within which the 3D object must lie. Finally, the object is
guaranteed to lie in the volume defined by the intersection of all the cones. The
main drawback of the method is that it doesn’t always capture the true shape of
the object, as concave shape regions are not expressed in the silhouettes. How-
ever, this is not a severe problem in a tracking application as the aim is not to
reconstruct photorealistic scenes.
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Fig. 1. The system block diagram showing the chain of functional modules

After the voxelization process (see figure 1), a connected component analysis
CCA is followed to cluster and label the voxels into meaningful 3D-blobs, from
which some representative features are extracted. Finally, there is a template-
based matching process aiming to find persistent blob correspondences between
consecutive frames.

The paper is structured as follows. In the next section the techniques for
pixel-domain analysis leading to the segmented foreground views are described.
Section 3 is devoted to discussion on issues concerning 3D-blob extraction, in-
cluding the voxelization process and the voxel coloring. Section 4 describes the
object tracking approach adopted. Section 5 illustrates the experimental evalu-
ations of the system. And, finally the paper concludes in Section 6 .

2 2D Foreground Segmentation

The 2D foreground extraction technique that we have used [4–6] is based on
the adaptive background subtraction method proposed by Stauffer and Grimson
[7]. A mixture of K Gaussian distributions is used to model RGB color changes,
at each pixel location, in the imaging scene over the time. With each incoming
frame the Gaussian distributions are updated, and then used to determine which
pixels are most likely to result from a background process. This model allows



a proper representation of the background scene undergoing slow lighting and
scene changes as well as momentary variations.

The foreground pixels thus obtained, however, are not exempt from false de-
tections due to noise in the background and camera jitters. A false-foreground
pixels suppression procedure is introduced to alleviate this problem. Basically,
when a pixel is initially classified as a foreground pixel, its 8-connected neighbor-
ing pixels’ models are examined. If the majority of these models, when applied
to this pixel, agree that it’s a background pixel, then it’s considered as a false
detection and removed from foreground.

Once the foreground objects pixels have been identified, an additional scheme
[5] is applied to find out if some of these foreground pixels correspond to areas
likely to be cast shadows or specular reflections. The working mechanism of this
novel scheme is the following:

As the first step, we evaluate the variability in both brightness and color
distortion [8] between the foreground pixels and the adaptive background, and
possible shadows and highlights are detected. It was observed though that this
procedure is less effective in cases that the objects of interest have similar colors
to those of presumed shadows. To correct this, an assertion process comparing
the gradient / textures similarities of the foreground pixels and corresponding
background is incorporated. These processing steps, effectively removing cast
shadows, also invariably delete some object pixels and distort object shapes.
Therefore, a morphology-based conditional region growing algorithm is employed
to reconstruct the object’s shapes. This novel approach gives favorable results
compared to the current state-of-the-art to suppress shadows / highlights.

3 3D Blob Extraction

Once the foreground region has been extracted in each camera view, the blobs in
the 3D space are constructed. In our implementation, the bounding volume (the
room) is discretized into voxels. Each of the foreground camera points defines
a ray in the scene. Then, the voxels are marked as occupied when there are
intersecting rays from enough cameras MINC over the total N.

The relaxation in the number of intersecting rays at a voxel prevents typical
missing-foreground errors at the pixel level in a certain view, consisting in fore-
ground pixels incorrectly classified as background. Besides, camera redundancy
also prevents analog false-foreground errors, since a wrongly defined ray in a
view will unlikely intersect with at least MINC −1 rays from the rest of the
cameras at any voxel.

3.1 Voxel Connectivity Analysis

After marking all the occupied voxels, with the process described above, a con-
nectivity analysis is performed to detect clouds of connected voxels, i.e. 3D-
blobs, corresponding to tracking targets. We choose to group the voxels with
26-connectivity which means that any possible contact between voxels (vertices,



edges, and surfaces) makes them form a group. Then, from all the possible blobs,
we consider only the ones with a number of connected voxels greater than a cer-
tain threshold B SIZE, to avoid spurious detections.

3.2 Voxel Coloring

After voxel grouping, the blobs are characterized with their color (dominant
color, histogram, histogram at different heights, etc.), among other features. This
characterization is employed later for tracking purposes. However, a trustworthy
and fast voxel coloring technique has to be employed before any color extraction
method is applied to the blob.

We need to note that during the voxelization and labeling process, inter/intra-
object occlusions are not considered, as it is irrelevant whether the ray came
from the occluded or the occluding object. However, in order to guarantee cor-
rect pixel-color mapping to visible voxels in a certain view, occlusions have to
be previously determined.

We discard slow exhaustive search techniques, which project back all the
occupied voxels to all the camera views to check intersecting voxels along the
projection ray. Instead, for the sake of computational efficiency, we propose a
faster technique, making use of target localization, which can be obtained from
the tracking system.

As photorealistic coloring is not required in our application, intra-object oc-
clusions are simply determined by examining if the voxel is more distant to the
camera than the centroid of the blob the voxel belongs to. On the other hand,
inter-object occlusions in a voxel are simply determined by finding objects (rep-
resented by their centroid) in between the camera and the voxel. This is achieved
by computing the closest distance between the segment voxel-to-camera and the
objects’ centroids (dist(vc,oc)). The process is schematized in the Voxel-Blob
level in figure 2.

To reduce even further the computational complexity, the voxels can be ap-
proximated by the position of the centroid of the blob they belong to, as it’s
shown in the Blob level in figure 2, and intra-object occlusions are not exam-
ined.

Finally, the color of the voxels is calculated as an average of the projected
colors from all the non-occluding views.

4 Object Tracking

After labeling and voxel coloring, the blobs are temporally tracked throughout
their movements within the scene by means of temporal templates.

Each object of interest in the scene is modeled by a temporal template of
persistent features. In the current studies, a set of three significant features are
used for describing them: the velocity at its centroid, the volume, and the his-
togram. Therefore at time t, we have, for each object l centered at (plx, ply, plz),
a template of features Ml(t). Prior to matching the template l with a candidate
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Fig. 2. Voxel Coloring block diagram, showing the two proposed methods. On the left,
the Voxel-Blob level, which addresses voxel coloring individually. On the right, a faster
approach using only the centroids of the blobs.

blob k in frame t + 1, centered at (p′
kx, p′

ky, p′
kz) with a feature vector Bk(t + 1),

Kalman filters are used to update the template by predicting its new velocity
and size in M̂l(t+1). The mean Ml(t) and variance Vl(t) vector of the templates
are updated when a candidate blob k in frame t + 1 is found to match with
it. The updates are computed using the latest corresponding L blobs that the
object has matched.

For the matching procedure we choose to use a parallel matching strategy.
The main issue is the use of a proper distance metric that best suits the problem
under study. The template for each object being tracked has a set of associated
Kalman filters that predict the expected value for each feature (except for the
histogram) in the next frame. Obviously, some features are more persistent for
an object while others may be more susceptible to noise. Also, different features
normally assume values in different ranges with different variances. Euclidean
distance does not account for these factors as it will allow dimensions with larger
scales and variances to dominate the distance measure.



One way to tackle this problem is to use the Mahalanobis distance metric,
which takes into account not only the scaling and variance of a feature, but also
the variation of other features based on the covariance matrix. Thus, if there are
correlated features, their contribution is weighted appropriately.

However, with high-dimensional data, the covariance matrix can become non-
invertible. Furthermore, matrix inversion is a computationally expensive process,
not suitable for real-time operation. So, in the current work a weighted Euclidean
distance between the template l and a candidate blob k is adopted, assuming a
diagonal co-variance matrix. For a heterogeneous data set, this is a reasonable
distance definition. Further details of the technique have been presented in the
past [4].

5 Results

The voxelization and tracking methods have been evaluated extensively using,
among others, our own recordings at the UPC smart-room and the benchmark-
ing video sequences provided by the CHIL project [9]. The CHIL sequences are
provided with manually labeled tags of the tracking target corresponding to
thousands of frames of seminar presentations in a smart room.

The room discretization was done using 5 × 5 × 5 cm3 cubes. During the
voxelization process we used 4 cameras, accepting voxel reconstruction with at
least MINC = 3 intersecting rays. Blobs with B SIZE lower to 700 were filtered
out and voxel coloring was performed with the Blob-level faster approach, setting
THR = 40 cms.

Under the above mentioned conditions, the voxelization and tracking process
performs at 5 fps; with an average tracking error under 20 cms (see the complete
results in Table 1).

30 minutes of video Error Results with Error > 30 cms

Results 148.2 mms 3.8%

Table 1. First column shows the mean of Euclidian distance between the estimated
position of the centroid, and the ground truth of the head center. Note that for this
evaluation, not 3D distances are used, but rather the 2D distance between the projec-
tion on the ground of the estimated head centre and that of the ground truth labels.
The second column expresses the percentage of frames where the distance between the
estimated distance and the ground truth was worse than 30 cms.

The algorithm performs extremely well except in object grouping situations,
not being able to segment them. In spite of that, the tracker is able to recover
the correct tags after the objects ungroup. Some videos are available in our web
at: http://gps-tsc.upc.es/imatge/ jl/Tracking.html



Fig. 3. Voxel reconstruction and labeling of a video sequence recorded at the UPC
smart-room

6 Conclusions and Future Work

In this paper, we have presented a system able to create a 3D-foreground scene,
characterize objects with 3D-blobs and track them, preventing the difficulties
of inter-object occlusions in 2D trackers, and increasing the robustness for not
having to rely only in one view. The system uses a novel voxel coloring scheme
which allows fast object histogram retrieval used later with other features in a
parallel matching technique during the tracking.

Some of the directions to take to improve results include projecting back
the 3D-blobs to assist the foreground segmentation technique. Also, dynamic
adjustment of the required number of intersecting rays at a voxel MINC will be
investigated. The parameter may be set depending on the position of the tracking
target, allowing tracking in areas where only fewer cameras have visibility.
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