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Abstract

Shape from Silhouette (SfS) is the general term used to refer to the techniques
that obtain a volume estimate from a set of binary images. In a first step, a
number of images are taken from different positions around the scene of in-
terest. Later, each image is segmented to produce binary masks, also called
silhouettes, to delimit the objects of interest. Finally, the volume estimate
is obtained as the maximal one which yields the silhouettes. The set of sil-
houettes is usually considered to be consistent which means that there exists
at least one volume which completely explains them. However, silhouettes are
normally inconsistent due to inaccurate calibration or erroneous silhouette ex-
traction techniques. In spite of that, SfS techniques reconstruct only that part
of the volume which projects consistently in all the silhouettes, leaving the rest
unreconstructed. In this paper, we extend the idea of SfS to be used with sets
of inconsistent silhouettes. We propose a fast technique for estimating that
part of the volume which projects inconsistently and propose a criteria for
classifying it by minimizing the probability of miss-classification taking into
account the 2D error detection probabilities of the silhouettes. A number of
theoretical and empirical results are given, showing that the proposed method
reduces the reconstruction error.
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1 Introduction

Shape extraction from a set of silhouettes (binary masks of the objects of
interest in the foreground scene) was firstly introduced by Baugmart [1] in
1974, though it was not until 1991 when Laurentini [2] defined the geometric
concept of Visual Hull (VH) as the maximal object silhouette-equivalent to
the real object S, i.e., which can be substituted for S without affecting any
silhouette [3,4,5]. Since then, Shape from Silhouette (SfS) has been considered
as the method of obtaining the VH of an object.

The concept of VH is strongly linked to the one of silhouettes’ consistency:
A set of silhouettes is consistent if there exists at least one volume which
exactly explains the complete set of silhouettes, and the VH is the maximal
volume among the possible ones. If the silhouettes are not consistent, then it
does not exist an object silhouette-equivalent, that is, the VH does not exist.
Total consistency hardly ever happens in realistic scenarios due to inaccu-
rate calibration or noisy silhouettes caused by errors during the 2D detection
process: background learning techniques [6,7,8,9,10,11,12,13,14], chroma key
techniques [15,16], etc. In spite of that, most SfS methods have been designed
in the past assuming that the silhouettes are consistent, thus reconstructing
only the part of the volume which projects consistently in all the silhouettes,
i.e., the volume where the visual cones intersect, without further considera-
tions.

We propose a shape reconstruction method based on the silhouette consis-
tency principle. Our system validates the regions in the silhouettes which are
consistent in all the projections and adjusts the regions which are not, dealing
with 2D errors, i.e., misses (foreground voxels detected as background) and
false alarms (background voxels detected as foreground), in an unbiased way.
By contrast, other SfS systems usually treat differently the 2D errors on the
basis of their type.

In the following, we summarize the different techniques available for extracting
shapes from a set of silhouettes. Then, we discuss which are the different types
of 2D errors and how they affect the reconstructed shape.

1.1 Shape from Silhouette

Many algorithms have been developed for constructing volumetric models
from a set of silhouette images. Silhouette images are first extracted by cre-
ating statistical models of the background process of every pixel value, i.e.
color [11,6,10], texture [17,18,19], or temporal-based information [20]. Then,
the foreground segmentation is performed at each pixel, either as an exception
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to the modeled background [6,7,8,9,10,11], or in a Bayesian framework, using
a maximum a posteriori classifier if there exist foreground models [12,13,14].
A good review of the state-of-the art on 2D-background subtraction methods
can be found here [21]. Once the silhouettes are extracted, the main step of all
the algorithms is the intersection test. Some methods back-project the silhou-
ettes, creating an explicit set of cones that are then intersected in 3D [22,23,24].
Others divide the volume into voxels [25,26,27,28,29,30]. Then each voxel is
projected into all the images to test (using a projection test) whether they are
contained in every silhouette. More efficient octree-based strategies have also
been used to test voxels in a coarse to fine hierarchy [31,32]. See [33,34] for
two surveys on volumetric-based methods.

Accurate silhouette extraction is crucial for good performance of SfS, inde-
pendently of the algorithm used. Following, we discuss how errors in the sil-
houettes affect the reconstructed Shape. Based on the outcomes of the issues
discussed, a more in-depth analysis of the proposed 3D-reconstruction tech-
nique will be possible.

1.2 Noise Propagation to the 3rd Dimension

Silhouette image noise can be classified in different ways, e.g., according to
the observable effects over the silhouettes; or depending on the cause that
produced the error:

• Defects observable in the silhouettes can be categorized into two types:
false alarms and misses. False alarms correspond to erroneous foreground
detections, while misses correspond to erroneous background detections.
• Errors in the silhouettes can be due to different causes: regular noise and

non-Gaussian deterministic errors. The first type of error is because of the
cameras thermal noise. Examples are the isolated background pixels within
the foreground silhouettes and foreground pixels within the background that
can be observed in Figure 1. The second one often consists in large regions
missed or falsely detected due to the arrangement of the scene or limitations
of the foreground segmentation technique. Deterministic misses in a view
often occur when, for instance, foreground objects have similar colors and
texture to their counterparts in the background. Deterministic misses can
also be due to background structures, such as the table in Figure 1, occluding
the foreground objects in some views. Analogously, specular reflections can
form large areas of falsely detected foreground pixels, see for instance the
upper left corner in Figure 1.

Most techniques in the literature have been focused on reducing the effects
of the Gaussian nature errors. However, since both of them can produce the
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Figure 1. Original image and segmented silhouette.

same effects (false alarms and misses), the study of 3D error propagation can
be isolated from the cause.

In classical SfS, a false alarm in a view does not contribute to a false alarm
in 3D unless the visual cone that is erroneously created intersects simultane-
ously with other C − 1 visual cones, where C is the total number of cameras
(see Figure 2(a)). If the intersection is produced, then the volumetric points
corresponding to the intersection are wrongly reconstructed. Since the recon-
structed shape is consistent because its projection in all the views matches
with the silhouettes, then the 2D false alarm is undetectable. However, the
shape is not reconstructed in the parts of the volume where at least one of
the erroneous visual cones does not intersect simultaneously with other C − 1
visual cones (see Figure 2(b)). This is the most typical case in scenarios where
the major part of the volume is unoccupied. In such case, the cones produced
by 2D false alarms do not intersect with visual cones from the rest of cameras,
then 2D false alarms are inconsistent with the reconstructed shape, allowing
their detection as we will show in the following sections.

Projection Reconstruction

(a)

Projection Reconstruction

(b)

Figure 2. In (a) there has been a false detection in camera A. The false visual
cone intersects with other C − 1 visual cones forming a false shape reconstruction.
Another false alarm in camera B is depicted in (b). In this case, the false alarm forms
an inconsistent cone for not intersecting with other C− 1 visual cones. This type of
false alarm, which is the most common case, does not affect SfS reconstructions.

Contrarily, a miss in a view inhibits the simultaneous intersection of C visual
cones in 3D, leading to an ineluctable miss in the shape (see Figure 3). This
makes the SfS algorithm highly sensitive to this type of errors, whereas 2D
false alarms do not produce erroneous reconstructions in most of the cases. 2D
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misses can also be indirectly detectable, since the projection of the incomplete
Visual Hull reconstructed will not match with the rest of correct silhouettes.

Projection Reconstruction

(a)

Projection Reconstruction

(b)

Figure 3. In (a), objects 1 and 2 are correctly detected in all the cameras. In (b),
object 1 has been missed in camera C. On the right the Visual Hull is depicted.
Note that the visual cones which do not intersect with any reconstructed shape are
considered to be inconsistent with respect to the Visual Hull.

As a final thought on the effects of 2D error propagation, it seems clear that
the very sensitive response of SfS to 2D misses contradicts the general notion
that “as the number of cones increases, the object is reconstructed with higher
precision” [3]. While this is true with perfectly extracted silhouettes, it is not
the case when the silhouettes have non null rates of miss. In fact, an infinite
number of silhouettes with a low but non null rate of randomly distributed
misses will not reconstruct any shape. In conclusion, although SfS algorithms
are perfectly fine with consistent silhouettes, they tend to penalize 2D misses
in front of 2D false alarms when the silhouettes are inconsistent. The Shape
from an Inconsistent set of Silhouettes (SfIS) has to be based on a different
principle; one that takes decisions in accordance with the probabilities of 2D
false alarm and miss; and one which does not imply that the Shape lies only
in the intersection of all the visual cones.

Indeed, SfIS might introduce more false alarms to the Shape than SfS as the
payoff for recovering some of the misses. We will show that false alarms will
be introduced only to the extent that global error is lower than without them.

1.3 Dealing with noise in related works

In the past, efforts have been put in proposing different algorithms for pal-
liating the effects of the propagation of the 2-dimensional noise. There are
different approaches to achieve noise reduction.

The first general approach involves using voxel-based reconstructions to re-
duce the probability of voxel miss-classification. In [29], Cheung et al. propose
an algorithm called SPOT. In their approach, the voxels are projected into
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each camera view. Then, their algorithm determines the minimum number of
foreground pixels (Zǫ) which have to be detected inside each projection of a
voxel to consider that the projection test is passed in a certain view. Finally, if
the projection test is passed in all the views, then the voxel is classified as part
of the Shape. The minimum number of foreground pixels Zǫ, over the total
Z, is determined after minimizing the probability of voxel miss-classification
considering that the silhouettes are consistent (i.e., that a voxel is part of
the shape if and only if the projection test is passed in all the views, while
it is background otherwise). So, on the one hand, SPOT considers that the
masks are consistent while, on the other hand, it accepts that the masks are
inconsistent for having misses and false alarms. Under the same assumption
of silhouette consistency, SPOT achieves lower voxel miss-classification rate
compared to other SfS algorithms that use naive projection tests such as test-
ing only one point per voxel and view or testing all the pixels within the
projection of the voxel. But even though SPOT and other voxel-based noise
reduction methods are an important step forward, none of them have focused
on the detection of deterministic errors.

A second approach suggested in [28] as a reference for comparison with the
method proposed, and also used in [27], requires the intersection of at least C−
P visual cones to allow a reconstruction, where P is the number of acceptable
misses among the set C of cameras. Although single misses do not block the
reconstruction in this approach, the resulting shape is larger than the real
Visual Hull for requiring fewer intersections of visual cones. A drawback of
this approach is that larger hulls are reconstructed either if the silhouettes are
consistent or not.

Another approach is to classify voxels as shape or background using cooper-
atively the information from the multiple cameras before extracting the 2D
silhouettes. In [28] an algorithm based on graph cuts determines the 3D shape
with lowest cost (smoothest shape consistent with the observations). In this
case, the 2D silhouettes are not explicitly computed. In [35] the shape-from-
silhouette problem is restated as a sensor fusion problem, providing each pixel
from each camera with a forward sensor formulation which models the pixel
observation responses to the voxel occupancies in the scene. Finally, in [30]
the classification of the 3D space is made on a Bayesian framework, using the
2D foreground/background probabilities of the multiple views. Although these
approaches are more robust to image noise and calibration errors than stan-
dard Shape from Silhouette, they do not consider deterministic errors caused
by occlusions or failures of the foreground detection technique. In this paper,
we propose to take advantage of the inconsistencies between the reconstructed
shape and the silhouettes to further improve the resulting shape.

Multi camera consistency constraints provide tools for detecting deterministic
errors. This has been used in another context in [36], where silhouette consis-
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tency is used to determine the relationship between sets of silhouettes captured
with an object in a different pose corresponding to each silhouette. The epipo-
lar tangency constraint (testing correspondences of the frontier points) is used
as a necessary condition for shape consistency. The authors discard using the
area of each silhouette that lies outside the visual hull for being slow in this
context and not suitable for pose estimation [36].

Our approach is placed in the later context. We propose a fast technique for
estimating that part of the volume which projects inconsistently and propose
a criteria for classifying it either as part of the shape or not by minimizing
the probability of voxel miss-classification. Our approach is voxel-based and
can be used to correct errors from any Shape from Silhouette technique, from
the standard ones to those which were proposed to minimize the effects of
noise in the foreground detection [28,35,30]. Moreover, we propose a general
framework where any projection test can be used [29].

The proposed method reconstructs the VH with standard Shape from Sil-
houette in the first step. In silhouette-based systems, Shape from Silhouette
reconstructs the volume with the lowest classification error for those voxels
that project consistently to all the camera views. A decision on the voxels
not forming part of the VH is taken in a second step by minimizing the error
probability on each voxel independently. In order to compute this error prob-
ability the projection of the computed VH is compared to the set of original
silhouettes.

The remainder of the paper is structured as follows. In the next section, the
voxel-based SfS approach is discussed. Section 3 is devoted to discussion of
SfIS, including detailed algorithms for its implementation. Section 4 presents
the conditions in which a very fast implementation of SfIS is possible. In
section 5, theoretical and experimental studies of the system are presented
with various synthetic and real-world test images. Finally, the paper concludes
in section 6.

2 Voxel-Based Shape from Silhouette

In SfIS, volume classification is achieved after minimization of the probability
of miss-classification. Since 3D errors depend on the classification probability
of the 2D technique, it is important to first study which are these 2D-error
probabilities. To do so, we focus on the voxel-based approach and discuss
the probabilities of error of several projection tests. In addition, we give the
probability of error of the voxel-based SfS approach, so that we can compare
it later with the probability of error of SfIS.
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First off, the voxel-based SfS algorithm for any projection test is the one shown
in Algorithm 1.

Require: Silhouettes: S(c), a Projection Test Function:
PTc(voxel, Silhouette)

1: for all voxel do
2: voxel ← Foreground
3: for all c do
4: if PTc(voxel, S(c)) is false then
5: voxel ← Background

Algorithm 1: Voxel-based SfS algorithm

Since voxel classification errors may be due to either false alarms or misses,
the probability that a voxel is miss-classified is:

P (Err3D) = PBP (FA3D) + PSP (M3D), (1)

where PB and PS are prior probabilities of a voxel forming part of the Back-
ground or Shape, respectively 1 , and P (FA3D) and P (M3D) correspond to the
probabilities of false alarm and miss in a voxel.

Since 3D false alarms in classical SfS happen when a voxel is wrongly classified
as part of the Shape in all camera views, while misses happen when a voxel is
wrongly classified as part of the Background in at least one camera view:

P (Err3D) = PB

C∏

i=1

Pi(FA2D)

︸ ︷︷ ︸

P (FA3D)

+PS

(

1−
C∏

i=1

(1− Pi(M2D))

)

︸ ︷︷ ︸

P (M3D)

, (2)

where Pi(FA2D) and Pi(M2D) correspond to the probabilities that the pro-
jection test has been wrongly passed (false alarm) or wrongly failed (miss) in
camera i, respectively.

Equation (2) can be expressed more compactly when the probabilities of false
alarm and miss are equiprobable in all the views (Pi(M2D) = Pj(M2D) and
Pi(FA2D) = Pj(FA2D), for all i and j):

P (Err3D) = PB P (FA2D)C

︸ ︷︷ ︸

P (FA3D)

+PS

(

1− (1− P (M2D))C
)

︸ ︷︷ ︸

P (M3D)

(3)

that besides being more compact, it is also significantly faster to compute than
equation (2). In the following, we will refer to a test as equiprobable if it has

1 Priors PS and PB = 1 − PS can be simply obtained by computing the de-
tected/total voxel occupancy ratio, for instance.
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equal error probability in all views, and non-equiprobable if it has different
error probability in each view where the test is being carried out.

Different projection tests can be used. The most simple one being the Single
Pixel Projection Test that projects the point in the center of a voxel into a
pixel in all the camera views. A Complete Pixels Projection Test can also be
used, consisting in testing all the pixels within the splat of the voxel in each
camera. The test is passed only if all the pixels within the splat belong to the
silhouette, that is, they are foreground pixels. The Incomplete Pixel Projection
Test can be defined as a soft version of the Complete Test, in which the test
is passed in a in a view i when a minimum number of pixels Mi over all pixels
belonging to the splat (Si) lie in the silhouette. A more efficient and robust
projection test is the Sampled Pixels Projection Test, that we define in the
following.

2.1 Sampled Pixels Projection Test

We have developed the Sampled Pixels Projection Test with SPOT [29] as
principal inspiration. As with SPOT, a number of R points within the voxel
are selected. These points may be equidistant among them, or just randomly
selected. The test is passed in a view i when at least N projected points, i.e.
pixels, over the total R, are within silhouette i.

Pixels in the Shape ≥ N ⇒ pass the test

Pixels in the Shape < N ⇒ do Not pass the test
(4)

Selection of R points for each voxel makes the test very fast for two reasons:

The first reason is that the number of selected points is chosen independently
of the voxel position, and therefore the probabilities of voxel miss-classification
are the same for all voxels.

The second reason is that since the test is run using exactly R pixels in each
projection, the probabilities of false alarm and miss of the test are identical
in all views. Thus, one needs to compute the probability of miss-classification
of a projection test only once for all views. Furthermore, as a consequence of
error equiprobability in the views, P (Err3D) can be computed using faster
equation (3), instead of (2).

The Sampled Pixels Projection Test here proposed differs from SPOT in the
expressions used to calculate the probability of voxel miss-classification. In
SPOT it is assumed that priors PB and PS are equiprobable, which is almost
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never the case, being in some setups PB several orders of magnitude larger than
PS. Another difference is that SPOT considers that a voxel-miss occurs only
when exactly one projection test is wrongly failed which is computationally
less complex, while the Sampled Pixels Projection Test uses equation (3) which
considers voxel-misses when the projection test is missed in at least one view
(see equation (5)):

P (M3D) = 1− (1− Pi(M2D))C =
C∑

i=1

(

C

i

)

P (M2D)i(1− P (M2D))C−i (5)

In order to fully express equation (3), the probabilities of false alarm (P (FA2D))
and miss (P (M2D)) of the test have to be deduced. In the Sampled Pixels Pro-
jection Test, these probabilities depend on N in the following manner:

Since the test is passed when at least N pixels lie in the silhouette, false alarms
of the projection test happen when there are at least N pixels falsely detected.
Contrarily, misses of the projection test occur when there are at least R−N+1
pixels missed.

Based on this reasoning, both miss-classification probabilities have to add
together the probabilities of all the possible cases which lead to a miss-
classification. Table 1 shows the precise mathematical expressions of P (FA2D)
and P (M2D) of the test.

Once that P (Err3D[N ]) has been expressed, the following step is to choose the
minimum number of points N over R which have to belong to the silhouette
so that the test is passed. Indeed, the best N is the one which minimizes the
probability of voxel miss-classification:

N⋆ = argmin
N

P (Err3D[N ]) (6)

Since P (Err3D[N ]) is not continuous, it cannot be minimized by differentiating
it. However, the optimal N⋆ can be obtained by doing an exhaustive search
over all possible N ∈ [0, R]. Note that even though being computationally
demanding, the calculation does not entail a problem since it only has to be
performed once for all views and voxels.

In Figure 4 2 we depict some visual examples of the behavior of the presented
projection tests. Note that Single Pixel Test is not as good performer as the

2 The images correspond to the 2005 evaluation dataset used within the framework
of the CHIL Computers in the Human Interaction Loop project [37]. The images
were acquired in the smart-room of the Interactive Systems Labs at the University of
Karlsruhe, Germany. The setup includes 4 fully calibrated wide angle lens cameras
with a resolution of 768 × 576 pixels, positioned at the room corners.
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Original images and silhouettes extracted
using [6].

VH projection using SfS with the Single Pixel
Projection Test.

VH projection using SfS with the Sampled
Pixels Projection Test.

Figure 4. All the VHs have been reconstructed in the area of the presenter, using
voxels with edge size of 2.5 cm.

Sampled Pixels Test, in this example. However this approach is suitable for
low-error systems focused to real-time operation.

In Table 1 we present a summary of the error probabilities for these two pro-
jection tests, which can be easily derived from their definition. Both projection
tests can be combined with the standard voxel-based algorithm. Following, we
propose the SfIS algorithm, which also makes use of the proposed tests. In
SfIS, the error probabilities of the employed test are important, and therefore
Table 1 will be a useful resource for the implementation of the algorithm.

Table 1
Projection Tests Error Probabilities

Type Proj. Test Error Probability

F.A.: P (FA2D)
Single P (FApix)

Sampled
∑R

i=N

(
R
i

)
P (FApix)i(1− P (FApix))R−i

Miss: P (M2D)
Single P (Mpix)

Sampled
∑R

i=R−N+1

(
R
i

)
P (Mpix)i(1− P (Mpix))R−i

14



3 Shape from Inconsistent Silhouette (SfIS)

In SfIS, the VH is reconstructed using SfS methods and corrected later with
those parts of the volume which were not correctly classified. 3D miss-classifications
can be detected by examining the inconsistent regions of the silhouettes. To
detect inconsistent regions, one can project back the VH and test whether
the projections match with the generative silhouettes. Then, the shape can be
reconstructed using a different criterion when there are parts of the volume
(Inconsistent Volume:IV ) which project to inconsistent regions in the silhou-
ettes (Inconsistent Silhouettes:ISs). Preliminary work on SfIS was presented
in [38]. In the following, we provide the generalization of SfIS for any type of
projection test. First, we formalize the concepts of IV and ISs and propose
a procedure for estimating them. Then, we propose a method for optimally
classifying the IV into Shape or Background.

3.1 Inconsistent Volume (IV)

The geometric concept of IV is introduced as the volume where there does not
exist a shape of the VH which could possibly explain the observed silhouettes.
The ISs are the resulting silhouettes after subtracting the original silhouettes
with the projection of the visual hull (see Figure 5 3 ).

The IV can be defined as the union of all the inconsistent cones, formed by the
back-projection of the ISs into the 3D scene. Thus, when the set of silhouettes
is consistent then all the ISs are empty, and the IV is also empty. However,
when a single inconsistency appears in at least one silhouette then the IV will
not be empty.

From the above equivalent definitions of the IV, it follows that the IV is
disjoint from the VH (V H ∩IV = ∅). This can be observed in Figure 6, where
different situations with consistent and inconsistent sets of silhouettes have
been depicted: In (a), there are two foreground objects which are correctly
detected in all the cameras. In (b), camera C misses foreground object 1. The
miss-detection entails an inconsistent set of silhouettes in cameras A and B.
Further inspection of the figure indicates that the IV in this case corresponds
to the union of the visual cones camA→obj1 and camB→obj1 , confirming
that is disjoint from the VH reconstructed around object 2. In (c), object 2
is correctly reconstructed but there have been two false alarms in cameras A
and B. These false alarms coincide with the regions of the projection of object
1 in (b). The IV in this case is the same as in (b).

3 The Kung-Fu Girl dataset is provided by the Graphics Optics Vision group of
Max-Planck-Institut fur Informatik.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5. The first row of images shows four synthetic silhouettes, corresponding to
the Kung-Fu Girl dataset, where some errors have been intentionally introduced: In
(b), the bottom part of the silhouette has been deliberately removed and, in (c), a
false alarm has been incorporated. The second row of images shows the projection of
the VH reconstructed using SfS from the silhouettes above. Note that the 2D false
alarm does not propagate to 3D, while a single miss propagates to 3D preventing
a proper reconstruction of the VH. Finally, in the bottom row, the ISs are shown.
The IV is the union of the back-projected cones of the inconsistent silhouettes.

A closer look at Figure 6(b) & Figure 6(c) reveals some preliminary conclusions
about how the IV could be classified. Observe that both figures depict different
situations that could have been the cause of the same observed silhouettes.
Note that it is impossible to guarantee whether there has been a single miss in
camera C or two false alarms in cameras A and B. However, the figures suggest
that the more inconsistent cones intersect, the higher the chances that the rest
of cameras have missed an object in the area of inconsistent cone intersection.
Of course, the exact chances of missing an object will also depend on the
probabilities of 2D miss-classification. The main problem to solve will be how
to choose the minimum number of inconsistent intersections (T ⋆) that have to
be produced so that it can be determined that a part of the Shape was missed
during the reconstruction process.

There is yet another factor which will have to be considered in the choice of the
optimal T ⋆. As Figure 6 suggests, the number of intersecting inconsistencies
is apparently tied to either the number of false alarms, or to the number
of cameras minus the misses. However, there is a case for which this is not
true. This situation is due to the fact that inconsistencies can be hidden by
occluding objects. Figure 7 shows a typical situation with inconsistencies and
occlusions. In the figure, a new object (object 3) has been deliberately placed in
the same visual cone of camB→obj1 . Thus, object 3 prevents the inconsistent
cone camB→obj1 when camera C misses object 1. The figure clearly indicates
that the number of inconsistent cone intersections is not a sufficient piece of
information for deciding whether there have been misses in some silhouettes
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(a) (b) (c)

Figure 6. In (a), objects 1 and 2 are cor-
rectly detected in all the cameras. In (b)
object 2 is correctly detected in all the
cameras, but object 1 is missed in cam-
era C. Former visual cones camB→obj1

and camA→obj1 are now inconsistent
cones, whose union forms the IV. Note
that it is impossible to know, from the
observed silhouettes, whether there has
been a single miss in camera C or two
false alarms in cameras A and B, as de-
picted in (c).

(a) (b) (c)

Figure 7. In (b) objects 1, 2 and 3 are
correctly detected in cameras A, B and
C. In (c), although objects 2 and 3 are
correctly reconstructed, object 1 is not.
The IV in this figure is smaller than its
counterpart in Figure 6(b) due to the oc-
clusion of object 1. The figure suggests
that the number of occlusions will be an
important determinant for proper clas-
sification of the IV.

or not. Furthermore, the figure also suggests that all views where an object
occludes a point of the IV will have to be ignored when determining its T ⋆.
Note that, due to self-occlusions of the objects, occlusions are not rare, and
thus they have to be considered.

In the following, we propose a method to determine the IV. Then, we describe
how we choose the minimum number of inconsistent intersections that have
to be produced so that it can be determined that an object was missed. The
presented method will take into account previous considerations regarding
occlusions.

3.2 IV voxelization

Prior to deriving the expressions for the IV classification, first we need a
method to reconstruct it.

In order to estimate the IV, we need to determine the union of the inconsis-
tent cones (corresponding to the back-projection of the ISs) analogously as
SfS methods determine the intersection of the visual cones (corresponding to
the back-projections of the silhouettes). As it has been previously reviewed
in section 1.1, determining visual cone intersections can be performed in dif-
ferent ways. For instance, some SfS techniques project back the silhouettes,
creating the set of visual cones which are intersected in the 3D space. In other
approaches, the volume is divided in voxels which are then projected to the
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images to find out (using a projection test) whether they are contained in
every silhouette or not.

In this paper, we develop the concept of Shape from Inconsistent Silhouette
using a voxel-based approach, although similar considerations can be derived
with the geometrical approach.

Require: Silhouettes: S(c), Proj. Test: PTc(voxel, Silhouette)
1: for all voxel do
2: V H(voxel)← true
3: for all c do
4: if PTc(voxel, S(c)) is false then
5: V H(voxel)← false
6: Project the V H to all the camera views: V Hproj(c)
7: for all voxel do
8: IV (voxel)← false
9: for all c do

10: if PTc(voxel, S(c)) is true then
11: if PTc(voxel, S(c)) 6=PTc(voxel, V Hproj(c)) then
12: IV (voxel)← true

Algorithm 2: Voxelization of the IV

The detailed process for the IV voxelization is shown in Algorithm 2. Note that
in the voxel-based approach, the role of the inconsistent silhouettes (difference
between silhouettes and VH projection) is replaced by the nonequivalence of
their projection tests: PTc(voxel, S(c)) 6= PTc(voxel, V Hproj(c)).

3.3 Unbiased Hull (UH)

The IV contains all the volumetric points which cannot justify the silhouettes
where they project. In terms of consistency, these points are candidates of
not having been classified as Shape by error, while all the points in the VH
are error-free. We define the Unbiased Hull (UH) as the subset of the IV
which is better explained as Shape for minimizing the probability of voxel
miss-classification. We call it unbiased, since the volumetric points of the IV
are classified as either Shape or Background based on the lowest probability
of error, while VH reconstruction methods are biased for always classifying
the IV as Background. In the final stage of the process, the union of the VH
and UH will form the best apparent hull in terms of lower miss-classification
probability.

The classification of the voxels in the IV has to be optimal based on all the
characteristics we can gather from them:
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• First off, each voxel in the IV has an associated number of foreground pro-
jections (F), which corresponds to the number of visual cone intersections in
the voxel. F can be simply calculated by counting the number of silhouettes
(S(c)) where the projection test is passed: PTc(voxel, S(c)) = true, being
voxel ∈ IV. For example, in Figure 7(c), all voxels corresponding to object
1 have F = 2, for being in the visual cones camA→obj1 and camB→obj3 .

In the IV, the number of foreground projections is bounded by: 1 ≤
F ≤ C − 1, since 0 foreground projections would correspond to a consistent
background detection in the VH and C detections would correspond to a
consistent foreground detection in the VH.
• A voxel in the IV can also be characterized by the number of consistent

foreground projections (O), corresponding to the number of views where the
voxel has been occluded. O can be computed as the number of times that
the projection test is passed both in a silhouette (S(c)) and in the projection
of the VH (V Hproj(c)): PTc(voxel, S(c)) = true = PTc(voxel, V Hproj(c)),
being voxel ∈ IV. For instance, voxels corresponding to object 1 in Fig-
ure 7(c) have O = 1, for intersecting with the consistent occluding cone:
camB→obj3 .

The number of occlusions in the IV is bounded by 0 ≤ O ≤ C − 1, as C

occlusions would correspond to a foreground detection in the VH.
• A voxel in the IV also has an associated number of inconsistencies (I), which

corresponds to the number of inconsistent foreground projections. Note that
I is such that F = I+O. From a practical point of view, the I of each voxel
corresponds to the number of times that the projection test is passed in a
silhouette (S(c)) but not passed in the projection of the VH (V Hproj(c)):
PTc(voxel, S(c)) = true 6= PTc(voxel, V Hproj(c)), being voxel ∈ IV. For
instance, voxels corresponding to object 1 in Figure 7(c), have I = 1, for
being in the inconsistent cone camA→obj1 .

In the IV, the number of inconsistencies (I) is bounded by:

1 ≤ I ≤ C − O− 1, (7)

where the lower bound is due to the fact that all the voxels of the IV
have been intersected with at least one inconsistent cone; and where the
upper bound has to be lower or equal to C − 1, since C inconsistencies
would correspond to a foreground detection of the Visual Hull. Moreover,
the number of occlusions (O) also has to be subtracted (C − O − 1), since
occlusions are only produced when voxels are intersected with consistent
visual cones.
• Finally, a voxel can also be associated with the number of views where it

projects to background (B). Note that B = C − F, and therefore B =
C− I−O. The number of background projections (B) can be computed by
counting the number of silhouettes (S(c)) where PTc(voxel, S(c)) = false,
being voxel ∈ IV. For instance, in Figure 7(c), B = 1, for being in the
inexistent cone camC→obj1 .
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The bounds on the number of background detections (B) are: 1 ≤ B ≤
C−O−1. Besides using a similar reasoning as with the number of inconsis-
tencies (I), the expression can also be simply deduced by using inequality (7)
substituting I with I = C −B− O.

Some further considerations regarding F, I, O and B can be derived: Interest-
ingly, the number of inconsistent projections (I) in a voxel are due to either
having had false alarms in I silhouettes or due to having had misses in B

silhouettes, where B = C − I− O.

As I rises, B falls, and therefore the probability of having B simultaneous
misses is increased while the probability of having I simultaneous false alarms
is decreased (see Figure 3(a) & Figure 3(c), respectively). Based on this rea-
soning, optimal threshold T ⋆ has to be such that if I ≥ T ⋆, the voxel is better
explained as Shape (with C − I − O misses) than Background (with I false
alarms):

I ≥ T ⋆ ⇒ decide Shape

I < T ⋆ ⇒ decide Background
(8)

In order to find T ⋆, first we have to express which is the probability of voxel
miss-classification for any P (Err3D[T ]) so that T ⋆ is that one which minimizes
it:

T ⋆ = argmin
T

P (Err3D[T ]) (9)

Similarly as with the voxels in the VH, a voxel in the IV is miss-classified if
it is wrongly classified as Shape (false alarm) or if it is wrongly classified as
Background (miss), as expressed in (1).

Let’s first examine the probability of false alarm (P (FA3D)). A false alarm in
a voxel happens when a voxel is classified as part of the Shape, while in fact
it forms part of the Background. If the voxel forms part of the Background,
then all inconsistencies correspond to false alarms of the projection test. Since
shape classification occurs when I ≥ T :

P (FA3D) =
C−O−1∑

i=max(T,1)

(

C

i

)

P (FA2D)i(1− P (FA2D))C−i, (10)

corresponding to the summation of all possible combinations that trigger a
false alarm in a voxel, and assuming equiprobable Pi(FA2D) = P (FA2D) in
all views (i).

Note that the combinations are bounded by the upper (C−O−1) and lower (1)
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bounds on the number of possible inconsistencies (see inequality 7), confirming
previous considerations regarding the influence of occlusions. Also note that
the expression is correctly expressed independently of the chosen T , even if
the chosen value is out of the interval where the number of inconsistencies are
possible.

The opposite miss-classification case in the IV is having a miss in a voxel. This
is the case when a voxel is classified as part of the Background, while in fact
it forms part of the Shape. Since a voxel is wrongly classified as Background if
I < T , and since I < T ⇐⇒ B ≥ C −O− T + 1, then the probability of miss
P (M3D) in the IV can be expressed in a similar manner as with false alarms:

P (M3D) =
C−O−1∑

i=max(C−O−T+1,1)

(

C

i

)

P (M2D)i(1− P (M2D))C−i, (11)

where P (M2D) corresponds to the probability that the projection test has not
been passed by error, and assuming equiprobable Pi(M2D) = P (M2D) in all
views (i).

Once the probability of voxel miss-classification has been expressed, T ⋆ can
be easily obtained by doing an exhaustive search of the minimum P (Err3D)
over all possible T for each case of occlusion as shown in algorithm 3.

1: for all Cases of Occlusion: o = 0 · · ·C − 1 do
2: MinPerr ← 1
3: for all Possible Number of Inconsistencies: i = 1 · · ·C − o− 1 do
4: if P (Err3D [T = i, O = o)]) ≤MinPerr) then
5: T ⋆[o]← i

6: MinPerr ← P (Err3D [T = i, O = o)])

Algorithm 3: Optimal thresholds for all cases of occlusion: T ⋆[o]. Note that
T ⋆[o] will take different values for each voxel depending upon whether P (M2D)
or P (FA2D) also depend on the voxel.

Note that the decisions on pixels which are not in the Visual Hull are made
considering as foreground only the original Visual Hull. However, relabeling
of a voxel in the inconsistent Hull could affect the decisions taken on other
voxels (for instance in counting occlusions). The optimal solution should be
made by considering all the possible interactions of all voxels, which would be
an intractable problem.
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Require: Silhouettes: S(c), T ⋆[o], VH, a Proj. Test Function:
PTc(voxel, Silhouette)

1: Project the V H to all the camera views: V Hproj(c)
2: for all voxel do
3: i← 0
4: o← 0
5: for all c do
6: if PTc(voxel, S(c)) is true then
7: if PTc(voxel, V Hproj(c)) is false then
8: i← i + 1
9: else

10: o← o + 1
11: if i > 0 then
12: if i ≥ T ⋆[o] then
13: UH(voxel)← 3D Foreground
14: else
15: UH(voxel)← 3D Background

Algorithm 4: SfIS algorithm

4 Real-Time SfIS

SfIS can be very fast, once the optimal thresholds have been computed for
each possible case of occlusion and stored in a lookup table (LUT). Real-
time operation of SfIS can be achieved when using it in combination with fast
projection tests. Often, the One Pixel Projection Test is used for being fast and
simple. However, LUTs cannot be used when probabilities of 2D miss and false
alarm of the projection test change over time (P (FAPix(t) and P (MPix(t)).
For example, when a mixture of Gaussians is used to model the Background,
the probabilities of miss and false alarm of the pixels depend on the variances
of the Gaussians, which are constantly changing over time.

Under these circumstances, it is important to have a fast search strategy that
can compute the optimal thresholds on-line.

4.1 A Fast Threshold Search Approach

The method presented here is focused on a fast implementation of SfIS using
the One Pixel Projection Test. However, we develop the equations for the more
general case of any projection test which is equiprobable with respect to all
views.

First off, since P (Err3D[T ]) is not continuous, it cannot be minimized by
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differentiating it. However, fast search of T ⋆ can be achieved if the problem can
be constrained into finding the minimum of P (Err3D[T ]) in a strictly convex
interval L. In other words, if we can guarantee that P (Err3D[T ]) is strictly
convex in L under certain conditions, and provided that these conditions are
reasonable, then there will always exist a global minimum in L, which will be
fast to obtain.

Following, we propose some sufficient conditions which guarantee the strict
convexity of P (Err3D[T ]), with respect to T ∈ Z in the interval of interest L:
first, we find which is the interval, and then, we obtain the conditions.

In order to find the L of interest, it is important to remember that the range of
possible inconsistencies in a voxel in the IV is I ∈ [1, C−O]. This is the reason
why, in the IV, P (Err3D[T ]) has constant values for T ≤ 1 and T ≥ C − O,
corresponding to the probabilities of always deciding Shape or always deciding
Background, respectively. Since strict convexity of a function can only occur
in the interval where the function is not constant, the interval of convexity of
P (Err3D[T ]) has to be: L ∈]1, C − O[.

Once that L has been determined, we only have to seek the conditions that
make P (Err3D[T ]) strictly convex in the interval. In general, a function f [x]
in Z is strictly convex [39,40] if it can be expressed as in inequality (12).

f [x− 1] + f [x + 1] > 2f [x] (12)

And since conditions of strict convexity have to be found assuming that the
projection tests are equiprobable in all camera views, the working expression
of P (Err3D[T ]) is:

P (Err3D[T ]) = PS

C−O−1∑

i=max(C−O−T+1,1)

(

C

i

)

P (M2D)i(1− P (M2D))C−i

︸ ︷︷ ︸

P (M3D)

+

(1− PS)
C−O−1∑

i=max(T,1)

(

C

i

)

P (FA2D)i(1− P (FA2D))C−i

︸ ︷︷ ︸

P (FA3D)

(13)

Then, strict convexity of P (Err3D[T ]) occurs if (13) satisfies (12):

P (Err3D[T − 1]) + P (Err3D[T + 1]) > PSP (M3D) + (1− PS)P (FA3D).
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In the interval L ∈]1, C − O[, the inequality above can be expressed as:

PS

((
C

T−1

)
P (F A2D)

T−1
(1 − P (F A2D))

C−T+1
−

(
C

C−O−T+1

)
P (M2D)

C−O−T+1
(1 − P (M2D))

O+T−1
)

︸ ︷︷ ︸

T1

+

(1 − PS)
((

C

C−O−T

)
P (M2D)

C−O−T
(1 − P (M2D))

O+T
−

(
C

T

)
P (F A2D)

T
(1 − P (F A2D))

C−T
)

︸ ︷︷ ︸

T2

> 0,

where P (M3D) and P (FA3D) are canceled.

As a matter of fact, since we only need to find a sufficient condition of strict
convexity of P (Err3D[T ]), we can separate the left term of the inequality into
two terms (T1, T2), and seek the conditions that make both terms larger than
0. Forcing the first term to be greater than 0, can be expressed as follows:

T <
(C − O + 1)P (M2D)−1(1− P (M2D))− O

1 + P (M2D)−1(1− P (M2D))
(14)

In order to guarantee that inequality (14) is satisfied in L, we can impose a
stricter condition on T , by replacing it with C − O which is larger than the
largest possible value that T can take in the interval L:

C−O <
(C − O + 1)P (M2D)−1(1− P (M2D))− O

1 + P (M2D)−1(1− P (M2D))
⇔ C <

1

P (M2D)
−1, (15)

which is stricter than condition (14).

Note that if condition (15) is satisfied, then condition (14) is also satisfied,
and therefore T1 is greater than 0 in L.

We can do a similar reasoning with T2, which is larger than 0 if:

C <
1

P (FA2D)
− 1 (16)

Finally, P (Err3D[T ]) can be said to be strictly convex in L ∈]1, C − O[ if
conditions (15) and (16) hold together, which can be expressed in a single
inequality as follows:

C <
1

max(P (FA2D), P (M2D))
− 1, (17)

which is usually satisfied in all typical scenarios. For instance, P (Err3D[T ]) is
strictly convex with respect to T , when less than 9 cameras are used even if
miss-classification probabilities are high (P (FA2D) = P (M2D) = 0.1).
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Note that if condition (17) is not satisfied, then we cannot guarantee whether
P (Err3D[T ]) is convex or not, and algorithm 3 has to be used. However, when
the condition holds, which is often the case, we can make use of some of the
properties of strictly convex functions:

If P (Err3D[T ]) can be said to be strictly convex, then its central difference
δP (Err3D[T ]) will correspond to a sequence of sorted elements in increasing
order. And the element in the sorted sequence which is closest to zero, will
correspond to the minimum of P (Err3D[T ]):

δP (Err3D[T ]) = P (Err3D[T + 1]− P (Err3D[T − 1]) (18)

where δ is the central difference operator.

Observe that if the sequence δP (Err3D[T ]) is sorted, we can approach the
closest value of 0 from the left side, by checking whether the midpoint of the
sequence is larger than 0, eliminating half of the sequence from further con-
sideration. The binary search [41] is an algorithm that repeats this procedure,
halving the size of the remaining portion of the sequence each time. The com-
plexity of the search operation in the binary search is O log2(n), because at
each test one half of the search space is discarded. Furthermore, δP (Err3D[T ])
can be computed 4

C−O−1
times faster than P (Err3D[T ]), since the sum over

all possible cases of 3D false alarm and miss (
∑C−O−1) does not have to be

computed.

In conclusion, the method described achieves the optimal solution T ⋆ in O log2(
4n

C−O−1
)

time, which is faster than the linear search approach described in algorithm 3,
which only achieves the solution in O(n) time. It is noteworthy that the
method proposed improves drastically as the size of the array, i.e. the number
of cameras, is increased.

Finally, refer to algorithm 5 for the detailed implementation of the method,
considering a left approach to the optimal solution T ⋆. Note that the optimal
solution has to be found for every possible case of occlusion that may occur
in the scene.

5 Results

In order to fully evaluate SfIS, two types of results are presented. First, we
present the theoretical improvements of SfIS over SfS in the IV . Second, we
show some V H ∪ IV reconstructions and projections using synthetic and real
data.
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Require: δP (Err3D[T, o])
1: for all Cases of Occlusion: o = 0 · · ·C − 1 do
2: left← 1
3: right← C − O

4: while left ≤ right do
5: index←

[
left+right

2

]

6: if δP (Err3D[T = index, O = o]) > 0 then
7: right← index− 1
8: else
9: left← index + 1

10: return T ⋆[o] = argminT={index,index+1} δP (Err3D[T, O = o])

Algorithm 5: Binary search of T ⋆[o] for all cases of occlusion (o).

5.1 Theoretical Improvements

It is important to keep in mind that SfIS is focused on minimizing the prob-
ability of Shape miss-classification in the IV in terms of consistency. This is
the reason why all points which belong to consistent zones are considered to
be error-free.

So, in order to compare the errors of SfS and SfIS as fairly as possible, let
us first rewrite the expressions of error of SfS in the IV, assuming that there
cannot be consistent miss-classifications. The new error rate is lower than the
one presented in section 2, which considered that miss-classifications could also
be consistent. However the reformulation is necessary in order to not unfairly
worsen the results of SfS in front of SfIS:

PSfS(Err3D) = PBPSfS(FA3D) + PSPSfS(M3D)

PSfS(FA3D) = 0

PSfS(M3D) =
C−O−1∑

i=1

(

C

i

)

P (M2D)i(1− P (M2D))C−i, (19)

where P (M2D) corresponds to the probability that the projection test has
not been passed by error, and assuming equiprobable Pi(M2D) = P (M2D) in
all views (i). Note that the upper bound is C − O − 1, corresponding to the
maximum number of background detections possible in the IV.

Figure 8(a) shows the
PSfIS(Err3D)

PSfS(Err3D)
probability ratio, assuming that an equiprob-

able projection test is being used and that there have not been occlusions.
Note that the ratio is always below 1, meaning that the probability of voxel
miss-classification in SfIS is always lower than in SfS.

An aspect of interest of SfIS is that it behaves as traditional SfS when (1)
P (FA2D) is high or (2) P (M2D) is low: In the first case, when there are high
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chances of 2D false alarm, SfIS mimics SfS in order to not incorporate 3D false
alarms. In the second case, when P (M2D) is very low, SfIS does not interfere
either, since SfS is the best reconstruction method when there are not misses.
In both cases, T ⋆ = C − O (see 8(b)), forcing the system to always decide
Background, and leaving an empty IV .

Figure 9 shows how
PSfIS(Err3D)

PSfS(Err3D)
varies with different number of occlusions.

Note that as O rises, SfIS has less room for maneuver. In any case, even when
O = C − 1, the probability of miss-classification of SfIS is never worse than
with SfS.

(a) (b)

Figure 8. The ratio
PSfIS(Err3D)
PSfS(Err3D) , and

T ⋆ for different values of P (FA2D)
and P (M2D). Results are shown con-
sidering a set-up of 6 cameras with
PB = 0.9, PS = 0.1. In this case, it is
assumed that there have not been oc-
clusions (O = 0). Note that T ⋆ = C

when there are not misses or when the
probability of 2D false alarm is high. If
T ⋆ = C then PSfS(Err3D) is equivalent
to PSfIS(Err3D).

(a) (b)

(c) (d)

Figure 9.
PSfIS(Err3D)
PSfS(Err3D) probability ratio

when there have been 1, 2, 3, and 4
occlusions, using the same set-up as in
Figure 8.

5.2 Empirical Results

Following we present two different experiments showing the performance of
SfIS in front of SfS. The first experiment consists in the reconstruction of the
V H and V H ∪ UH from a set of synthetic images using different projection
tests. The experiment includes quantitative results of the algorithms. In the
second experiment, we use real-word images obtained in the smart-room of
our lab to show results which can be straight away evaluated from simple
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observation.

5.2.1 Results with Synthetic Images

In order to obtain quantitative results of the algorithm, we have employed a
set of synthetic images because we can arbitrarily add/remove random noise
and occlusions to them and results can be objectively evaluated using the
ground truth.

The set of images which we have used are shown in Figure 10. The first row of
images depicts the synthesized scene used in the experiments. In the pictures,
a table partially occludes the bottom part of a person in the first two views.
The second row of images shows the corresponding set of silhouettes. Note that
the silhouettes have some misses and false alarms which have been artificially
added. Finally, in the row at the bottom, the silhouettes corresponding to the
noise-free and occlusion-free consistent scene are shown.

Original images and silhouettes with artificial noise
(P (M2D) = P (FA2D) = 0.01).

Original synthetic silhouettes without occlusions or
artificial noise.

Figure 10. Set of synthetic images and silhouettes. The dataset, which is a courtesy
of J.C. Pujol from the Carlos III University of Madrid, consists of 5 sequences of
frames of 352x288 pixels. In the scene, the cameras, table and chairs are positioned
resembling the set-up of the smart-room of the UPC.

The evaluation process is performed as follows. First, a reconstruction from
the set of consistent silhouettes, corresponding to the third row in Figure 10,
is obtained to be used as the Ground Truth (G.T.). Then, SfS and SfIS algo-
rithms are employed to reconstruct 3D Shapes using the bogus silhouettes of
the second row in Figure 10. Finally, these Shapes are confronted with that
one which was reconstructed using the consistent set of silhouettes.

In order to evaluate the performance of the system, we have employed the
verification measures that are commonly used in the information retrieval
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field:

Recall =
#correct Shape detections

#correct Shape detections + #misses
. (20)

Precision =
#correct Shape detections

#correct Shape detections + #false Shape detections
. (21)

F-measure =
2× Recall× Precision

Recall + Precision
. (22)

Recall measures how well the classifier detects voxels that form part of the
Shape and precision measures how well it weeds out the voxels in the back-
ground. A well balanced system should have high, similar values of both recall
and precision.

V H projection using SfS with the One Pixel
Projection Test using silhouettes without occlusions

or noise.

V H projection using SfS with the One Pixel
Projection Test using the bogus silhouettes.

V H ∪ UH projection using SfIS with the One Pixel
Test using the bogus silhouettes.

Figure 11. SfIS vs. SfS using 5 cameras, and the One Pixel Projection Test.

Figure 11 shows three different types of reconstructions using the One Pixel
Projection Test. (1) In the first row, the projections of the Shape reconstructed
from the noise-free and occlusion-free images are observed. In this case, the
standard SfS algorithm has been used to obtain the voxelized scene. Since the
Shape has been obtained from the set of consistent silhouettes, the labeled
voxels are used as the Ground Truth (G.T.) for comparison in Table 2. (2)
The second row of images corresponds to results of SfS using the noisy and
partially occluded silhouettes. Note that most of the errors correspond to 3D
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misses, as shown in Table 2. (3) The row at the bottom shows the projection of
the Shape using the proposed SfIS method. Note that SfIS is able to recover
that part of the Shape that the table occluded in the first two views, and
also improves the detection in case of global noise. Besides, observe that SfIS
is also successful in not incorporating more false alarms than the recovered
misses, as shown in Table 2. Also note that some of the wrongly reconstructed
voxels can be easily removed in a further stage using simple morphological
operations such as opening by reconstruction. A 3D area opening of size 4 has
been used to obtain the results of the third column in Table 2.

Table 2 offers another interesting result. Note that SfIS is not only better
than SfS w.r.t. the F-measure, but it also has similar precision and error rates
implying an unbiased treatment of error types in 3D.

Table 2
Results using the One Pixel Projection Test

Ground truth SfS SfIS SfIS-filt

# Correct detections 5381 4371 5071 5071

# False alarms 0 2 391 330

# Misses 0 1010 310 310

Recall 1 0.81 0.94 0.94

Precision 1 0.99 0.93 0.94

F-measure : 2×Recall×Precision
Recall+Precision 1 0.90 0.93 0.94

We want to remark that the data on Table 2 is only provided to validate the
implemented system. That is, we confirm, that, as imposed in the design of
the system, we reduce the total error and we can balance the two kind of
errors (false alarms and misses). We could consider SfS as a version of SfIS
where the threshold taken for the voxels of the Inconsistent Volume was set to
a fixed number (C⋆, the number of cameras). However, in most applications,
the best threshold is the one than minimizes the total error, that is the one
proposed in last section.

We have experimented other projection tests, obtaining similar results. In-
dependently of the projection test, SfIS is always useful because it balances
errors between false alarms and misses and produces the lowest possible total
error.

5.2.2 Results with Real-World Images

In Figure 12, a real world scenario is shown. In this case, the foreground
segmentation has been done using [6], and we have added some additional
false alarms in (a) and (d).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 12. Silhouettes, projection of the VH and projection of the V H ∪ UH, in
first, second and third row, respectively.

The experiment has been performed using a very high-resolution volume, em-
ploying voxels with edge size of less than 5 mm. The underlying idea is to
guarantee that the projection of the splat of any voxel in the shape is com-
prised within a pixel in all the silhouettes. Therefore, the reconstruction is
independent of the projection test and P (FA2D) and P (M2D) concur with
the probabilities of FA and Miss of the background learning technique. In this
case, we are assuming PFA(2D) = PM(2D) = 0.1, and PB has been selected
based on the percentage of voxel occupancy in the VH.

In (b), the silhouette’s left arm has not been detected due to the similar color
to its background counterpart. The second row of images shows the projection
of the VH, reconstructed using the standard voxel-based SfS algorithm. Note
that the miss-detection in (b) has been propagated to the rest of silhouettes.
The row of images on the bottom shows the projection of the V H ∪ UH

in white and gray, respectively. Observe that the projection of the arm is
recovered, even in (j), while remaining unaffected to the artificial false alarms.

The experiment shows that SfIS can be used to recover some of the errors
produced in the 2D foreground segmentation techniques by exploiting the re-
dundancy present in a multi-camera setup. On the contrary, SfS does not only
fail to recover these types of errors but it actually worsens all the silhouettes
by propagating the 2D misses from one view to the rest of views.

To complete the experiments, we have have considered it appropriate to in-
clude here a set of tests comparing SfIS with other approaches using real
world video sequences. This time, the experiment has been performed using
a low-resolution volume, employing voxels with edge size 2.5 cm, therefore
prioritizing fast 3D detections over a more accurate Shape.

Also, since we are using real-world images with imprecise calibration, we have
opted to indirectly evaluate the performance of the reconstruction methods.
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To do so, we have compared the projection of the 3D volumes with a set of five
manually classified silhouettes from images that have been randomly selected
in the video sequence. These manually labeled silhouettes are the ground truth
in this case.

Three different techniques have been compared. The first technique is a version
of SfS where a voxel is not classified as Shape if there are more than one
views where its Projection Test fails. We identify this method as SfS C − 1
intersections in our experiments. The second evaluated technique is traditional
SfS. The third tested method is SfIS. In this experiment, we have employed
the One Pixel Projection Test in all the methods for a fair comparison.

The pixel models employed for 2D classifications are a single Gaussian per
pixel for the background and a uniform distribution for the foreground. 2D
classifications are obtained using MAP and the models are updated using EM.

For visual inspection purposes, we present two figures (Figure 13 and Fig-
ure 14) with results corresponding to different times and camera views of a
scene. The original image, the 2D segmentation and the projections of the
Shapes obtained with the methods under evaluation are shown.

In Figure 13, the images corresponding to camera 2 in frame number 175 are
shown. Note that the 2D only segmentation (2nd column, 1st row) -not using
3D redundancy information- has failed due to the similar colors of the person
in the foreground and the clutter in the background.

Similar problems are observable in Figure 14. The figure corresponds to frame
650 and shows two out of the five camera views used in all the methods.
Note that 2D misses in a view are transferred to the rest of views in the
SfS approach. The SfS C − 1 approach does not propagate 2D misses but
incorporates many false alarms conducing to larger Shapes and silhouettes’
projections. As it can be observed from the images, SfIS is a good approach
for not propagating 2D misses as well as for not incorporating many false
alarms.

View of
Camera 2

2D only
Segmentation

SfS C − 1
intersections

SfS SfIS

Figure 13. Silhouettes and 3D volumetric projections corresponding to frame 175
with different techniques using the One Pixel Projection Test.
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View of
Camera 1

2D only
Segmentation

SfS C − 1
intersections

SfS SfIS

View of
Camera 3

2D only
Segmentation

SfS C − 1
intersections

SfS SfIS

Figure 14. Silhouettes and 3D volumetric projections corresponding to frame 650
with different techniques using the One Pixel Projection Test.

Quantitative results of this experiment are presented in Table 3. These results
have been obtained by averaging the number of 2D false alarms, 2D correct
detections and 2D misses over a set of projected reconstructions. These projec-
tions correspond to the five views where the silhouettes were manually labeled
to be the ground truth, as previously commented.

Table 3
System Evaluation through the Projection of 3D Reconstructions in Video Se-
quences

Ground truth SfS (C − 1 int.) SfS SfIS

# Correct foreground det. 32270 27471 15023 20445

# False alarms 0 29760 5077 7529

# Misses 0 4808 13256 11834

Recall 1 0.85 0.53 0.63

Precision 1 0.48 0.75 0.73

F-measure : 2×Recall×Precision
Recall+Precision 1 0.62 0.62 0.68

Some interesting conclusions can be extracted from the table. Note that the
SfS C − 1 approach has a highest recall rate. Indeed, it also has a very large
number of false alarms and, therefore, a poor precision rate, but it is a good
method if we want to be sure to detect the foreground voxels when they exist.

In contrast, traditional SfS is very precise, even more than SfIS. SfS detects
fewer voxels but it is very good at asserting that those voxels form part of the
Shape.

SfIS is the most balanced method. It has high precision and recall rates and
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its F-measures is the best. In conclusion, SfIS has the best F-score of them,
as simple visual inspection of the images confirms and it is the method that
performs best when operating with video sequences 4 .

6 Conclusion

In this paper we have presented a novel scheme for effective Shape from Sil-
houette using sets of inconsistent silhouettes as usually found in practical sce-
narios. The scheme exploits the consistency principle, and performs an error
detection and correction procedure of the most probable consistent silhouettes
according to the available data.

First, we have introduced a method to determine the IV, i.e., the volumet-
ric zones leading to inconsistent regions in the silhouettes. Then, we have
described a voxel-based technique -which works with any projection test- to
enumerate the number of inconsistent cone intersections. Finally, we have pro-
posed a method to obtain the minimum number of inconsistent cone intersec-
tions T ⋆ that have to be produced so that it can be determined that an object
was wrongly missed by a SfS technique. Threshold T ⋆ is taken after minimiza-
tion of the probability of voxel miss-classification. In addition, we have stated
the conditions in which a very fast implementation of SfIS is possible.

SfIS has proved to be an effective 3D reconstruction tool. We have given
theoretical prove that SfIS miss-classification probability is lower than the one
using SfS. Experimental results have also been carried out showing that SfIS
does not only reduce the number of errors but it is also successful in balancing
errors between 3D false alarms and misses, contrary to conventional SfS that
mainly introduces only 3D misses. Indeed, SfIS introduces false alarms to the
Shape. However false alarms are introduced only to the extent that global error
is lower than without them. SfIS has been show to be effective for reducing
both Gaussian nature and deterministic errors.

SfIS can be used in at least two different manners. (1) To extract better vol-
umes by minimizing the effects that inconsistencies have over the reconstructed
Shape. (2) To recover errors in the silhouettes from informed decisions made
at the volume level, where individual detections at the 2D level are compared
for consistency. Contrarily, conventional SfS does not only fail to recover er-

4 Due to the great number of images resulting from all the methods compared, the
number of camera views and the large time interval evaluated, it is not possible
to show here the complete set of resulting images. However, the video sequences
with all the evaluated methods at all the cameras views can be obtained in http:

//gps-tsc.upc.es/imatge/ jl/
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rors in the silhouettes but it worsens the silhouettes by propagating 2D misses
from one view to the others.

Some of the future possibilities of SfIS include giving feedback to the back-
ground learning techniques to make more trustworthy background models.
Also,the combination of SfIS with methods that use the silhouettes’ probabil-
ities instead of using binary silhouettes for the first voxel occupancy decision
can further improve the results. Although these methods [28,35,30] provide a
voxel occupancy decision which takes into account the multi-camera informa-
tion, inconsistencies still remain due for instance to occlusions in one of the
views. Thus, the Visual Hull created by these methods can be further refined
by classifying the Inconsistent Volume that they produce.

This work was partially developed within the framework of Spanish Project
VISION CENIT 2007-1007.
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