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Abstract

This paper addresses two-dimensional (2D) and three-dimensional (3D) active entity detection in

video scenes. Active entities are the foreground parts in a stationary background scene and they typically

correspond to the regions of interest in many applications such as automated video surveillance, object

and person tracking and suspicious object detection, among others. We present a novel framework that

permits obtaining 2D and 3D active entities as an inter-dependent probabilistic procedure. In the process

of creating this framework, a study has been conducted to explore ways to generalize existing activity

detection techniques to a Bayesian form. With regard to volumetric activity detection, very little work

has been done in the field of Bayesian classification. Thus, in order to support the framework previously

outlined, a new Bayesian 3D activity detection technique has been developed. A probabilistic analysis

only accounts for half of the problem. The Bayesian framework gives a unified manner to interact

between the planar and the volumetric detection tasks and helps to prevent the propagation of noisy

pixel observations to the 3D space. However, when large systematic errors occur in the 2D detection

level, a different approach has to be taken to correct them. In this respect, 2D/3D geometric relations

can be exploited. Errors in the planar detection task often produce a set of incompatible foreground

planar regions in the sense that they cannot be globally explained as the projection of the detected

3D volume. This is a key issue with significant implications that is not considered in most of current

approaches. We use a new 3D foreground detection scheme that is able to correct errors in 2D planar

detections by checking the consistency between 3D foreground detections and the set of corresponding

2D foreground regions 1.

1This work has been partially supported by the Spanish project ACERCA TEC-2004 and the Spanish Administration organism

CDTI.
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I. INTRODUCTION

Detecting active entitis in video scenes has been one of the most studied topics in computer

vision. Active entities are the foreground regions in a stationary background scene. They typically

correspond to persons and objects that move over static elements of the environment. Thus,

areas of activity concur with the regions of interest in many applications, such as automated

video surveillance, object tracking, human behavior modeling, immersive video-conferencing,

suspicious object detection, etc. This great number of applications has motivated a lot of research

and led to many significant achievements.

In recent years, as computing hardware became more powerful, the growth of 3D detection

applications has been particularly noticeable. Several of the volumetric foreground detection

techniques are built on top of planar foreground detectors. In practice, most volumetric detectors

simply take planar detections as an input source, without considering which was the process

that yielded the planar foreground regions. These systems have been used in recent years with

great success. However, the dependency between the planar and volumetric approaches can be

exploited and improved further in order to bridge the gap between both techniques.

This paper addresses the problem of precise 3D active entity detection by analyzing the

2D-3D interaction process. We present a novel framework that permits obtaining 2D and 3D

active entities as an inter-dependent procedure. In order to create this framework, we have taken

a Bayesian approach that unifies our new findings with many of the most successful current

approaches.

State of the art in 2D foreground segmentation

Over the years, many works have been published on the two dimensional foreground segmen-

tation task, describing different methods that treat to extract that part of the scene containing

active entities. In most of the cases, the stochastic background process is modeled first, and then

the foreground pixels are classified as an exception to the model [31], [13], [23], [11], [7]. In

other setups, the foreground process is also modeled, and the scene is classified using maximum

a posteriori (MAP) [33], [25], [15], [21]. Then, in order to guarantee accurate results along the

time, the background models are continuously updated making use of all the pixel values that

are classified as background. In this particular type of framework, all background observations

contribute equally to update the background models. However, it seems reasonable to assume
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that observations with higher background probabilities should weight more than those with lower

probabilities.

Proposed Bayesian classification in 2D

In this paper we develop a theoretical framework in which pixel classification and update

stages are fully explained as a Bayesian procedure, where one stage is probabilistically related

to the other. This framework permits to obtain an estimate of the system’s error rate and the

probability of each classification, which is necessary for the 3D foreground detection proposed in

this paper. We also provide a simple solution for not having to model the foreground appearances

and still be able to use the probabilistic setting. The classification step of our scheme provides the

probabilities that are then used to update the models. Moreover, this new scheme opens the doors

to the possibility of incorporating other sources of information that provide solid information

about pixel probabilities. One of these external sources of information, consisting in projecting

more-informed 3D probabilistic maps, will be described along the paper.

State of the art in 3D foreground segmentation

Providing probabilistic justification to classical approaches significantly improves the perfor-

mance of planar foreground detection. With regard to volumetric activity detection, the literature

reveals that very few work has been done in the field of Bayesian classification. Several multi-

camera 3D foreground detection systems are based on 2D foreground segmentation techniques

that make use of 2D background modeling. Shape from Silhouette (SfS) for 3D model extraction

is the approach taken in most of these systems. It consists on building binary volumetric models

(the Visual Hull) from the set of binarized foreground masks. SfS was firstly introduced by

Baugmart [2] in 1974, though it was not until 1991 when Laurentini [20] defined the geometric

concept of Visual Hull (VH) as the maximal object silhouette-equivalent to the real object S,

i.e., which can be substituted for S without affecting any silhouette.

Many algorithms have been developed for constructing volumetric models from a set of

silhouette images. Once the silhouettes are extracted, the main step of all the algorithms is

the intersection test. Some methods back-project the silhouettes, creating an explicit set of cones

that are then intersected in 3D [22], [28], [10]. Others divide the volume into voxels [26], [16],

[30], [4], [17]. Then each voxel is projected into all the images to test (using a projection test)

whether they are contained in every silhouette. See [29], [6] for two surveys on volumetric-based

methods.
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Accurate silhouette extraction is crucial for good performance of SfS, independently of the

algorithm used. Errors in the silhouettes affect the reconstructed Shape. Defects observable in the

silhouettes can be categorized into two types: false alarms and misses. False alarms correspond

to erroneous foreground detections, while misses correspond to erroneous background detections.

These errors in the silhouettes can be due to different causes: regular noise and non-Gaussian

systematic errors. The first type of error is because of the cameras thermal noise. It produces

isolated background pixels within the foreground silhouettes and foreground pixels within the

background. The second one often consists in large regions missed or falsely detected due to the

arrangement of the scene or limitations of the foreground segmentation technique. Systematic

misses in a view often occur when, for instance, foreground objects have similar colours and

texture to their counterparts in the background. Systematic misses can also be due to background

structures, occluding the foreground objects in some views. Analogously, specular reflections can

form large areas of falsely detected foreground pixels.

Some approaches oriented to eliminate gaussian noise classifying voxels as shape or back-

ground using cooperatively the information from the multiple cameras before extracting the 2D

silhouettes have also been developed in the past. In [30] an algorithm based on graph cuts

determines the 3D shape with lowest cost (smoothest shape consistent with the observations). In

this case, the 2D silhouettes are not explicitly computed. In [8] the shape-from-silhouette problem

is restated as a sensor fusion problem, providing each pixel from each camera with a forward

sensor formulation which models the pixel observation responses to the voxel occupancies in the

scene. However, in none of these approaches the 3D map was used to feed back the background

models in the images.

Other approaches involve the usage of voxel-based reconstructions to reduce the probability

of voxel miss-classification. In [4], Cheung et al. propose an algorithm called SPOT in this

direction. SPOT achieves lower voxel miss-classification rate compared to other SfS algorithms

that use naive projection tests such as testing only one point per voxel and view or testing all

the pixels within the projection of the voxel.

Proposed 3D foreground segmentation

We propose in this paper to use a new Bayesian 3D activity detection technique that better

exploits the redundancy present in a multi-camera environment by using the 3D maps to feed

back the background models in the images. A first approach to this system was propose in [17].
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The Bayesian framework proposed gives a unified manner to interact between the planar and the

volumetric detection subsystems. In addition, an outlier model in the probabilistic framework

prevents noisy pixel observations from propagating to the rest of the views through a bogus

reconstruction. However, when large systematic errors occur in the 2D detection plane, then

outlier models simply cannot help.

Errors in the planar detection task often produce a set of incompatible foreground planar

regions in the sense that they cannot be globally explained as the projection of the detected

3D volume. This is a problem with significant implications that is not considered in most of

current Shape from Silhouette approaches. Current 3D reconstruction methods simply assume

that errors do not occur in the 2D plane. Instead, we use a new three-dimensional foreground

detection scheme ([18], [19]) that is able to correct errors in 2D planar detections by checking

the consistency between 3D foreground detections and the set of corresponding 2D foreground

regions. The technique allows to obtain accurate 3D models that provide the most reasonable

explanation of a 3D detection based on 2D observations. In this paper we propose to incorporate

back the reassigned classifications into our Bayesian framework so that the 3D probabilistic map

reflects them. In this way, we can deal with both gaussian and systematic errors.

This paper is structured as follows. Next Section presents our Bayesian framework for the pla-

nar foreground detection task. Section III is devoted to the 3D-Shape reconstruction techniques.

We describe in Section IV the interaction between the cooperative Bayesian method proposed

and the 3D reconstruction considering silhouette inconsistencies. Some results with real-world

sequences are shown in Section V and, finally, Section VI provides some conclusions.

II. BAYESIAN FOREGROUND SEGMENTATION

A. Background and Foreground Models

A very fast method to learn and update a representation of the background of the imaging scene

is to model the background color at each pixel location fitting a Gaussian function [33]. A more

elaborated method consists in using a Mixture of Gaussians (MoG) to model the background

process at each pixel [11], [31]. This is very similar to the previous method. But, in addition,

an MoG is also able to model a background scene that is constantly changing along the time

such as in raining situations, waving flags, water, etc. Finally, it is possible to obtain better

approximations of the background process at each pixel by learning a smooth continuous version
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of the histogram obtained from the last number of observed values in the same pixel location.

This can be achieved by summing one Gaussian centered at a pixel value for each sample that

is observed in the same location along the time [7].

All the mentioned models above share that they use a pdf function to represent the background.

The MAP-based foreground segmentation scheme that is presented in this section may be used

with any models which are expressed as a pdf, including the models described above. Besides,

the 2D foreground detection can be adjusted according to the higher level applications needed.

For instance, a decision needs to be taken regarding the incorporation into the background of

the foreground objects that remain static for a long period of time. If the application needs to

consider these static objects as background (for instance in parking lots), then the model of the

pixels needs to be updated even if a pixel is considered as foreground, in such a way that when

a given value for a given foreground pixel has been observed for a long time, this information is

incorporated into the background model. For other applications it is better not to include these

objects into the background. This is the case of the smart-room scenarios, where people can

remain static for a long period, but we wish to continue to track them. In this case, background

models should not be updated with foreground values’ information. This is the option taken in the

experiments performed in this paper. But the methodology presented can be easily extended to

the aforementioned situation and also to new techniques which consider three classes of objects:

background, moving objects and static objects [9].

In order to make use of a maximum a posteriori setting, apart from the background model, a

foreground model must also exist. The main problem is how to obtain a reliable characterization

of the foreground process of a pixel. The foreground entities of an image are those which are

in a prominent place in a scene, due to the fact that they are constantly moving. Therefore, it is

difficult to obtain a foreground characterization by inspection of a single pixel location, without

using global information of what is happening at the whole image level.

Several approaches have been proposed in the literature that try to characterize complete

foreground entities (the so-called blobs in the literature) [24], [23], [11], [7], [25], [15], [21].

Basically, in these approaches each foreground entity is characterized by means of a complex

model that takes into account the geometrical properties of the entity. The fundamental premise

of these methods is that a tracker is employed so that the foreground models of each entity can be

correctly updated along the time. Finally, in a per-pixel MAP setting, the blob-based foreground
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models must be mapped to each pixel before performing the foreground segmentation. A MAP

setting has been used in [25], [15], [21], among others. However, in the model update stage of

these works, the update process is taken as a separate task, not making use of the classification

probabilities that MAP provides.

We think it is important to provide also a method which allows using MAP without requiring

a complex setup (that is, the estimation of the pdf of the foreground relying on the tracking) to

obtain foreground models. To do so, we propose using a uniform pdf to model the foreground

process at each pixel. A MAP setting, even with this naive foreground characterization, provides

better results than a classification based only on background models.

First off, let’s assume that we don’t have any clue about the foreground process in the scene.

We can, however, consider that in images with D channels, each pixel in the image has values

in D = {0, · · · , 255}D. Then, without more information about the foreground entities, we can

assume that the likelihood of observing one of the values in D, given that it belongs to a

foreground process is

p(Ix|foreground) =
1

256D
, (1)

where Ix denotes the value of a certain pixel x in the image.

B. MAP Classification

Several pixel foreground/background classification settings have been proposed in the past.

We will provide here the development of the MAP based classifiers, their error probabilities and

principal characteristics. The model update part will be covered in the next sub-section. As will

be shown, in our proposal model maintenance is partially built on the classification procedure

reviewed here. Thus, it is important to provide first a solid foundation of the classification

methods in order to introduce the update scheme later.

A per-pixel probabilistic foreground and background classification setting involves two classes:

foreground, denoted with symbol φ, and background β. The classification task can be solved by

choosing for each pixel the most probable class, i.e., that one with the highest probability.

Therefore, a pixel is classified into foreground if

φ = argmax
c={φ,β}

P (c|Ix), (2)
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and analogously, a pixel is considered to belong to the background stochastic process if

β = argmax
c={φ,β}

P (c|Ix). (3)

If we assume that the classes of each pixel are independent, then a pixel can be classified as

foreground if

φ = argmax
c={φ,β}

P (c)p(Ix|c)
p(Ix)

= argmax
c={φ,β}

P (c)p(Ix|c)
P (φ)p(Ix|φ) + P (β)p(Ix|β)

, (4)

which completes the maximum a posteriori setting.

1) Classification Probabilities: Assuming that we are using the uniform foreground model

in (1), we can derive the foreground and background probabilities for each pixel,

P (φ|Ix) =
P (φ)p(Ix|φ)

P (φ)p(Ix|φ) + P (β)p(Ix|β)
=

P (φ) 1
256D

P (φ) 1
256D

+ P (β)p(Ix|β)
(5)

P (β|Ix) =
P (β)p(Ix|β)

P (φ)p(Ix|φ) + P (β)p(Ix|β)
=

P (β)p(Ix|β)

P (φ) 1
256D

+ P (β)p(Ix|β)
. (6)

For the sake of simplicity, let us consider a simple background model, using only one Gaussian

to represent a single background mode. Inherently, this model assumes that the background is

static, without moving leaves in a tree or waving flags, water and so on. The model is:

Gx(Ix) =
1

(2π)D/2
√
|Σx|

e−
1
2

(Ix−µx)TΣ−1
x (Ix−µx). (7)

which leads to

P (φ|Ix) =
P (φ) 1

256D

P (φ) 1
256D

+ P (β) 1

(2π)D/2
√
|Σx|

e−
1
2

(Ix−µx)TΣ−1
x (Ix−µx)

(8)

P (β|Ix) =
P (β) 1

(2π)D/2
√
|Σx|

e−
1
2

(Ix−µx)TΣ−1
x (Ix−µx)

P (φ) 1
256D

+ P (β) 1

(2π)D/2
√
|Σx|

e−
1
2

(Ix−µx)TΣ−1
x (Ix−µx)

. (9)

2) Classification Error: In an exception-to-background segmentation setting it is impossible

to obtain a measure of the probability of a given classification because only the background

class is available. On the contrary, we have shown that an MAP setting provides the posterior

probabilities of each class. Moreover, it is also possible to obtain a measure of classification

reliability in terms of the error probabilities.

Note that it is important to know the segmentation error rate to inform to the subsequent parts

of the system that make use of the classifications. For instance, the error rate of a foreground

segmentation scheme is critical in the 3D reconstruction module that we present in Section III.
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In order to present the formulation of the error rate of a foreground segmentation scheme, let

us assume that we are using the foreground and background models in (1) and (7), respectively.

There are many sources of stochastic fluctuation. Suppose an observation Ix is made leading

to a decision ĉ. We can summarize average performance in terms of a confusion matrix, P (ĉ|c),

which for the detection task is a 2 × 2 array representing the hit (correct detections): P (φ̂|φ),

false positive, also known as false alarm: P (φ̂|β), false negative (miss): P (β̂|φ), and correct

rejection rates: P (β̂|β):  P (φ̂|φ) P (φ̂|β)

P (β̂|φ) P (β̂|β)

 . (10)

Obviously, an ideal system would maximize the frequency of hits and rejections while min-

imizing the frequency of misses and false alarms. If the probabilistic distributions are known,

the best decision one can make is choosing one class or another according to (4). For example,

consider the foreground detection task using the models depicted in the figure and assume that

we do not have information about the priors. In that case, the cross of both distributions occurs

at
1√

2πσx

e
−
(

I�x√
2σx

)2

=
1

256
, (11)

where I�x is used to represent Ix−µ. Computing I�x and integrating the foreground and background

likelihood functions in the corresponding intervals, we obtain the following confusion matrix for

the MAP setting P (φ̂|φ) P (φ̂|β)

P (β̂|φ) P (β̂|β)


MAP

=

 1− 2
√

2σx
256

√
− ln

(√
2πσx
256

)
1− erf

(√
− ln

(√
2πσx
256

))
2
√

2σx
256

√
− ln

(√
2πσx
256

)
erf

(√
− ln

(√
2πσx
256

))
 .

C. Model Update

Once the classification determination has been made, it is important to update the foreground

and background models by including the most recent input. There exist many different methods

to update the models. The most important bit is how to seize the entry information, that is, how

to measure the relevance of the observations when updating the models. For instance, in the

approach of Stauffer and Grimson [31] (S&G from now on), they propose to adapt the learning

rate of background models to the likelihood that a pixel value belongs to the model, without

further Bayesian justification.
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Instead, we propose using a Bayesian scheme. The method we advocate is centered on the

Expectation Maximization approach [5]. Following, we provide the parameters update equations

using the Expectation Maximization (EM) algorithm. We have derived the equations for learning

the parameters of an MoG background model, considering a uniform foreground model. This is

the main difference with respect to the other approaches, that simply maximize the background

model without considering the foreground process [14], [24] . Using an MoG in the background

makes it possible to compare EM to the update scheme of the S&G method. In addition, the

derivation of the single Gaussian background model can be simply obtained as a particularization

of the MoG case. Moreover, we will show that the update step of the EM method is directly tied

to the MAP classification described in Section II-B, closing the Bayesian classification-update

loop.

1) EM of a Gaussian Mixture and Uniform Functions: The mixture density parameter esti-

mation problem is probably one of the most widely used applications of the EM algorithm.

In this case, we are assuming the following probabilistic background model:

p(Ix|β) = MoGx(Ix) =
K∑
k=1

wx,kGx,k(Ix) =
K∑
k=1

wx,k

(2π)D/2
√
|Σx,k|

e−
1
2

(Ix−µx,k)TΣ−1
x,k(Ix−µx,k),

(12)

where K is the total number of Gaussians used in each pixel, and where wx,k is the prior proba-

bility that a background pixel is represented by a certain mode k of the mixture (
∑K

k=1wx,k = 1).

These priors are often referred as the weights of the Gaussians. Also note that the means and

covariances are indexed with respect to a Gaussian k of the MoG in x: Σx,k and µx,k.

The foreground model we are considering in the derivation of the EM method is a uniform

function. Therefore, the likelihood function for a certain pixel x is:

p(Ix|θ) = P (β)MoGx(Ix) + P (φ)
1

256D
, (13)

where the model parameters (θ) to estimate for the pixel are:

θ =
{
µx,1, · · · ,µx,K ,Σx,1, · · · ,Σx,K , wx,1, · · · , wx,K

}
. (14)

These parameters are iteratively estimated using a number of statistically independent ob-

servations Ix[1], · · · , Ix[M ] at pixel location x drawn from either Gaussians Gx,1, · · · ,Gx,K or
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from the uniform function. Developing the Expectation Maximization procedures, leads to the

following update parameters in the n-th iteration:

P (yi = k|θ)? =

∑M
i=1 P (yi = k|Ix[i], θn)

M

µ?x,k =

∑M
i=1 P (yi = k|Ix[i], θn)Ix[i]∑M
i=1 P (yi = k|Ix[i], θn)

Σ?
x,k =

∑M
i=1 P (yi = k|Ix[i], θn)(Ix[i]− µ?x,k)(Ix[i]− µ?x,k)T∑M

i=1 P (yi = k|Ix[i], θn)
, (15)

where it has to be noted that priors P (yi = k|θ) and wx,k relation is wx,k = P (yi=k|θ)
P (β)

.

Note that one of the best characteristics of the approach of Stauffer and Grimson is that

the background model is updated instead of fully recomputed at any time, which makes their

algorithm very fast. However, these update equations assume a fixed number of observations M .

In other words, EM, as presented so far, is inherently offline. It requires multiple passes through

the data set. As the data set grows, so does the computation per iteration of EM. This limitation

is a common limitation of the EM algorithm. A practical online implementation that is capable

of foreground segmentation of each frame as it is acquired has to re-estimate all the parameters

incrementally from each new sample.

In the following we adapt the derivations of offline EM to online EM considering both a

foreground and background model. The main idea behind an online update scheme is that last

observation M is used to feed the last iteration n:

P (yi = k|θ)[t] = P (yi = k|θ)[t− 1] + α (P (yi = k|Ix[t], θt)− P (yi = k|θ)[t− 1])

µx,k[t] = µx,k[t− 1] + αP (yi = k|Ix[t], θt)

(
Ix[t]− µx,k[t− 1]

P (yi = k|θ)[t]

)
Σx,k[t] = Σx,k[t− 1]+

+ αP (yi = k|Ix[t], θt)

(
(Ix[t]− µx,k[t− 1])(Ix[t]− µx,k[t− 1])T −Σx,k[t− 1]

P (yi = k|θ)[t]

)
. (16)

And if only one Gaussian per pixel is used:

µx,k[t] = µx[t− 1] +
αP (β|Ix[t], θt)

P (β)
(Ix[t]− µx,k[t− 1])

Σx,k[t] = Σx,k[t− 1]+

+
αP (β|Ix[t], θt)

P (β)

(
(Ix[t]− µx[t− 1])(Ix[t]− µx[t− 1])T −Σx[t− 1]

)
, (17)
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where P (β) is a constant prior value.

Similar equations have been derived in the past [14], [24], [32]. However, the main difference

with our derivation is that we have included a foreground model into the likelihood of the pixel,

permitting us to obtain the parameters that maximize the complete likelihood. The background

models are updated using all the color values that are observed along the time and the system

is in charge of automatically weighting the contributions of each sample. Our system first

determines the background probability of an observation (using MAP), and then the probability

of a certain mode, assuming that the system has observed a color value corresponding to the

background. Thus, implicitly, the process of pixel model update is making use of the MAP

classification setting. This permits obtaining better background models and, therefore, also better

classifications.

The advantages of the planar foreground detection scheme can be outlined as follows:

• Only those observations with high background probability contribute more. That is, the speed

of adaptation of the background models is proportional to the certainty of the background

observation. Contrarily, in the systems that only maximize the likelihood of the background,

all uncertain observations that are erroneously classified as background contribute to wrongly

update a model at full speed.

• The system supports MoGs for the background models, among other pdfs. Note that MoGs

have been successfully used many times in the past in other frameworks. Thus, the system

has been built over robust building blocks which have been adapted and improved in a

Bayesian way.

• The parameters used in our system are more intuitive than those needed in classical ap-

proaches such as [14]. In fact, in our case, we only need to choose the priors of foreground

and background and the number of Gaussians that will be used. In the approach of S&G

one has to decide the number of Gaussians, the threshold T , corresponding to the minimum

prior probability that the background is in the scene and the adaptation speed α. And in

practical scenarios, the user also needs to find a suitable value for the adaptation learning

rate ρx,k, which is usually fixed to a constant value.

• The system is not only able to classify pixel observations but to provide the probability of a

given classification. These probabilistic values will be used in Section III-B to build three-

dimensional probabilistic maps. Moreover, the system also provides its probabilities of false
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alarm and miss, which will be used in Section III-C to evaluate the error probabilities of

the volumetric reconstruction method that employs foreground segmentations from multiple

views.

• Finally, background models are updated proportionally to the probability that an observation

belongs to the background. This correlation between model update and pixel probability can

be exploited by using other more-informed probabilistic sources information that are external

to the pixel process. This finding will be used to bridge the gap between the planar and

volumetric foreground detection tasks, unifying the algorithms presented in this section and

in the next one.

III. 3D-SHAPE RECONSTRUCTION USING MULTIPLE CAMERAS

A. Shape from Silhouette

As it has been commented in the Introduction many multi-camera 3D foreground detection

systems are based on 2D foreground segmentation techniques that make use of 2D background

modeling. SfS is the approach taken in most of these systems. As mentioned, it consists on

building the Visual Hull from the set of binarized foreground masks (the silhouettes). The Visual

Hull is constructed back-projecting the silhouettes into the scene and creating the 3D intersection

area, or projecting every voxel of the scene into the images and testing if their projection is

contained in the 2D foreground region. Only if all the projections are within a foreground

region, a voxel will be considered as Shape.

The construction of the 3D Shape from the 2D foreground region has some inherent advan-

tages:

• Accurate 3D location information of the entities of interest

• Most of the 2D occlusion problems between foreground objects are solved, because they

do not occur in the 3D space

• Many 2D foreground detection errors due to noise or shadows are corrected, because they

only appear in one of the image projections, and thus are not reconstructed when performing

the 3D intersection.

Regarding the shadows, let us mention that shadows and highlights are an important problem

when dealing with 2D foreground segmentation. Let us consider for instance the shadows cast

by the foreground objects. They produce pixel values which do not correspond to the learnt
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background model and are thus detected as foreground. Actually, shadow removal algorithms

are usually incorporated in the background subtraction/modeling step. Several studies have been

carried out to extract cues from the background reference images/models and use them to identify

if a pixel is a cast shadow/highlight pixel or not. Prati et al. have presented an in-depth survey

of these algorithms [27]. There are two main sets of works that incorporate these extracted cues,

including the use of color and texture information to find chrominance and texture similarities

between the background representation and the incoming frame. In [34] we proposed to use a

combination of the two and correct the remaining classification errors using images prior to the

shadow-removal process where shapes are still well defined to assist blob reconstruction.

However, when Shape from Silhouette is performed, shadows will only be reconstructed if they

are seen from all camera views. This can be observed in the results of Fig. 3 and Fig. 5, where

some shadows can be observed in the 2D only Segmentation, and they are not reconstructed in

any of the SfS approaches.

B. Probabilistic Voxel Classification

In the standard SfS procedure, two kinds of errors have been observed: errors due to regular

noise and what we have called systematic errors. To deal with the first kind of errors we

propose here to simultaneously reconstruct and classify the 3D space, instead of previously

classifying images in 2D and reconstructing the volume later, as it is the case of regular

SfS approaches that use the 2D foreground binary masks. This is achieved by obtaining 3D

probabilistic information from 2D probabilistic maps and then projecting back 3D probabilities

to each view. Projected probabilities are then used to update the two-dimensional background

models. The scheme permits to obtain better 3D foreground detections that in turn also permit

to obtain better planar foreground detections. In the state-of-the-art SfS approaches that employ

2D binary masks extracted after background modeling, the models in each view are always

temporally maintained along the time using evidence only from that view. In our approach the

2D models are updated using evidence from all the cameras in a Bayesian framework. Thus, both

2D and 3D classifications are performed using existing information in all views along the time.

Finally, the proposed technique permits setting external probabilistic information or foreground

and background priors to 3D regions instead of a more tedious 2D prior setting. Indeed, 2D

regions represent some part of the viewing scene at different depths and this makes it difficult
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to apply 2D priors. However, in a 3D Bayesian framework, 3D priors do not suffer from this

limitation since occlusions are inherent to the 2D space. Apart from setting 3D priors, the scheme

permits incorporating external 3D probabilistic information to the 3D map. In the next section

we will propose a reconstruction method that is able to obtain the volume that minimizes the

probability of volumetric misclassification. We will show how to incorporate this information

back into the Bayesian 3D map.

A 3D probabilistic representation is only possible when the two-dimensional foreground

classifications of the scenes can be probabilistically justified. The proposed approach takes the

MAP scheme for 2D foreground classification as its building block.

A pixel position x and an image view I will be referred to each one of the C views: xi and Ii.

For the sake of simplicity, we particularize the pixels’ background models to the simple case of

a single Gaussian per pixel Gi,xi
(Ii(xi)) (corresponding to view i, pixel xi)) and we employ a

uniform function as the foreground distribution. However, any other foreground and background

likelihood functions can be used without any problems whatsoever.

In the following, we first consider error-free 2D models, and next we adapt an outlier model

to the 2D models.

1) Probabilistic Voxel Classification Considering Error-Free 2D Models: Voxel-based SfS

can be thought as a classification problem. Consider a pattern recognition problem where, in a

certain view Ii, a voxel in location v is assigned to one of the two classes φ (2D-foreground),

or β (2D-background), given a measurement Ii(xi), corresponding to the pixel value of the

projected voxel: v→ xi, in camera i [12]2.

Now, let us represent with super classes (Γ0, · · · ,ΓK) all possible combinations of 2D-

2By taking only 1 pixel per view for each voxel we are implicitly considering a very simple, though common, projection test.
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fore/background detections in all views (i = 1, · · · , C):

Γ0 = { φ, φ, φ, · · · , φ }
...

Γj = { Γj[1], Γj[2], Γj[3], · · · , Γj[C] }
...

ΓC = { β, β, φ, · · · , φ }
...

ΓK = { β, β, β, · · · , β }

with the following prior probabilities

P (Γ0) = P (φ)P (φ) · · ·P (φ) = P (φ)C = PS

P (Γ1) = P (β)P (φ) · · ·P (φ) = P (β)P (φ)C−1

...

P (ΓK) = P (β)P (β) · · ·P (β) = P (β)C ,

where a voxel classified as foreground, i.e., a voxel of the 3D-Shape, belongs to super class Γ0,

with PS prior probability3. Contrarily, an undetected voxel, i.e., a voxel of the 3D background,

belongs to any of the other super classes (Γk 6=0), since voxels are not detected when at least one

projected voxel (xi) is not classified as a foreground pixel. The total number of 3D background

super classes is K =
∑C

i=1

(
C
i

)
.

According to Bayesian theory, given observations (Ii(xi), i = 1, · · · , C), a super class Γj is

assigned, provided the a posteriori probability of that interpretation is maximum:

P (Γj|I1(x1), · · · , IC(xC)) = max(P (Γk|I1(x1), · · · , IC(xC))). (18)

If the cameras are positioned over a short baseline, then the views have high correlation

between them. However, it is reasonable to assume that the camera views are statistically

independent among them in environments with a scatter of cameras around the scene, which

3The prior probability of detecting a foreground voxel can be simply obtained by computing the ratio detected voxel
total voxel occupancy using

conventional SfS, for instance. P (φ) and P (β) are obtained from PS : P (φ) = C
√
PS and P (β) = 1 − P (φ). Priors can also

be set according to the particularities of each set-up, setting low foreground priors where activity is unlikely, for instance.
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is the case considered here. Thus, assuming here and in the rest of the section that the super

classes are conditionally independent, and using the Bayes theorem:

P (Γk|I1(x1), · · · , IC(xC)) =
P (Γk)

∏C
i=1 p(Ii(xi)|Γk)

p(I1(x1)) · · · p(IC(xC))
, (19)

where p(Ii(xi)|Γk) is the likelihood of the observation, given a certain super class. For instance,

given Γ2 = {φ, β, φ, · · · , φ}, likelihoods p(I1(x1)) and p(I2(x2)) are

p(I1(x1)|Γ2) = p(I1(x1)|Γ2[1]) = p(I1(x1)|φ) =
1

2563

p(I2(x2)|Γ2) = p(I2(x2)|Γ2[2]) = p(I2(x2)|β) = G2,x2(I2(x2)).

Substituting (19) into (18) we finally obtain the decision rule

Γj = argmax
Γk

P (Γk)
C∏
i=1

p(Ii(xi)|Γk[i]). (20)

Or in terms of a posteriori probabilities

Γj = argmax
Γk

P (Γk)
C∏
i=1

P (Γk[i]|Ii(xi))

P (Γk[i])
, (21)

which is equivalent to

Γj = argmax
Γk

P (Γk)
1−C

C∏
i=1

P (Γk|Ii(xi)), (22)

where P (Γk|Ii(xi)) is the probability of a super class, given a certain observation. For instance,

given I2(x2), the probability of super class P (ΓC+1) is

P (ΓC+1|I2(x2)) = P (β)P (β|I2(x2))P (φ)C−2

= P (β)
P (β)G2,x2(I2(x2))

p(I2(x2))
P (φ)C−2,

where p(I2(x2)) is the unconditional joint distribution of pixel x2 in view I2.

Both (20) and (22) decide the most probable super class. However (20) can be used to obtain

faster classifications, even though the probabilities are not explicitly computed.

Note that the decision rule is very strict in the sense that a single misclassification in a view

inhibits a correct interpretation of the process occurred. Misclassifications are specially sensible

in the case of super class Γ0, since a single misdetection of a φ class will let a erroneous 3D

background detection. On the contrary, misclassifications in a 3D background super class often
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will lead to another 3D background super class, which is not a severe problem. A more in-depth

analysis of this unbiased behavior to error types is given in the following section.

In order to prevent such type of errors, we can force the classifiers not to deviate from the

prior probabilities. This can be done considering an outlier model in the 2D models [1].

2) Probabilistic Voxel Classification Considering Outliers in the 2D Model: If we consider

that the 2D model has an associated probability of outlier e, then we can use the prior probability

when the model fails

P ′(Γk|Ii(xi)) = eP (Γk) + (1− e)P (Γk|Ii(xi)), (23)

and then,

P ′(Γk|I1(x1), · · · , IC(xC)) =

C∏
i=1

(eP (Γk) + (1− e)P (Γk|Ii(xi))) . (24)

A Taylor expansion in f around 0, after replacing variables f = (1− e), gives

P ′(Γk|I1(x1), · · · , IC(xC)) = (eP (Γk))
C+

+ (eP (Γk))
C−1(1− e)

C∑
i=1

P (Γk|Ii(xi)) +O((1− e)2). (25)

If e is close to 1, then only the first two terms matter. This is a rather strong assumption but

it may be satisfied when observed data is highly ambiguous.

Under this assumption, super class Γj is chosen using the following decision rule

Γj = argmax
Γk

(
(eP (Γk))

C + (eP (Γk))
C−1(1− e)

C∑
i=1

P (Γk|Ii(xi))

)
. (26)

3) 2D Model Update: Once the voxels have been classified with any of the previously

discussed procedures, the resulting voxels probabilities are projected to all the views. Note

that when the probabilities are projected, special care has to be taken so that pixels are assigned

the highest foreground probability value among all voxels whose projection belongs to the pixel.

Additionally, the corresponding foreground probability that is projected from 3D to 2D has to

be adapted to the change of dimensionality:

P (φi|I1(x1), · · · , IC(xC)) = C
√
P (Γ0|I1(x1), · · · , IC(xC)), (27)
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assuming that all the views contributed to the voxel with identical probabilities. This probability

can be used to update the 2D background models described in Section II-C. In the 2D MAP

setting described in the mentioned section, background models are updated according to their

background probabilities (P (β|Ix)). The Bayesian setting of both approaches let us easily in-

corporate this 3D extra probabilistic information to the models update process by redefining the

P (β|Ix) as follows:

P ′(β|Ix) = P (2D)P (β|Ix) + (1− P (2D))(1− P (φi|I1(x1), · · · , IC(xC))), (28)

where P (2D) is a design parameter (a prior) that determines the influence that 3D information

has into the 2D model update process (a value of P (2D) = 0.5 has proved to work well in our

experiments).

Projecting back 3D probabilities permits to update 2D background models with higher preci-

sion. In Section II we proved that, based on EM, the background models should be updated

proportionally to the probability that an observation belongs to the background. Thus, the

equations derived here are important to provide more robust learning speeds based on the

information acquired from multiple cameras. Note that better adaptation speeds also permit to

obtain better 2D background models. In this scheme, the background models are constantly

updated making use of the redundancy present in a multi-camera system. In addition, the

framework presented here can be extended to incorporate other 3D probabilistic values obtained

using other techniques. In this regard, the method developed in the following section will be

used to refine the 3D map obtained with the presented method, leading to even better 2D/3D

foreground detections.

4) System Implementation: When using a large number of cameras, the class of maximum

probability has to be found in a large search-space (K), and computational costs may be too

high for certain applications. If this is the case, one can compute the probability of foreground in

a voxel, that is the 3D shape probability, P (Γ0|Ii(xi), i = 1, · · · , C) and set a threshold on this

probability. The probability of the 3D-Shape (P(Γ0)) can be obtained using (19) when working

with reliable 2D-models, or with (24) when considering a certain probability of outliers (e) in

the 2D-models.

Threshold selection is performed only once per each different type of working environment.

The threshold can be simply obtained by inspection of original image confronted to the projected
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probabilities (see Fig. 1(a) and (c)). Similarly as discussed in Section III-B.3, note that when

the probabilities of the 3D-Shape are projected, special care has to be taken so that pixels are

assigned the highest probability value among all voxels whose projection belongs to the pixel.

Note that this threshold can be set with very high precision, since probabilities are numbers

defined in R. On the contrary, in classical SfS, thresholds have to be set in the realm of integer

numbers Z, i.e., one has to decide the minimum number of foreground projections in 2D that

form a voxel in 3D.

Finally, it has to be remarked that the most reliable classification, with a Bayesian justification,

is done using (20), when considering error-free 2D models and (26) when considering an error

model. The drawback is that the probabilities of all the 3D background super classes, which we

are not interested in, will have to computed.

5) Results: The proposed scheme has been evaluated using 5 synchronized video streams,

captured and stored in JPEG format, in the smart-room of our lab at the UPC. Apart from

the compression artifacts, the imaging scenes also contain a range of difficult defects, includ-

ing illumination changes due to a beamer and shadows. Our system has dealt with all these

problems successfully, improving the results of conventional 2D segmentators and standard SfS

reconstruction methods.

Fig. 1 shows an example in a certain view and instant. In this example, we have used

foreground priors equal to 0 in those regions which are within 0.4m of the walls. The original

image (a) can be compared to the resulting mask after performing a conventional 2D foreground

segmentation in (b) and a cooperative 2D foreground segmentation in (d). In the example, the

outlier model in (24), without further simplifications is used. In this example, we have used

e = 0.5. The classification is performed setting a threshold to the probability of 3D-foreground

by inspection of (c), as discussed in the previous section.

Inspection of silhouettes (b) and (d) shows that the 2D models learned in the cooperative

approach are clearly better than those which are learned using a single-view approach.

The Bayesian setting presented has proved to work well. However there are a set of problems

which this technique cannot alleviate. When errors are systematic, that is, some areas which are

completely missed in certain views consistently along the time, then the technique is not able to

detect the problem. In the next section we present an approach in this direction. The integration

of both methods is discussed in Section IV.
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(a) (b) (c) (d)

Fig. 1. The original image is show in (a). Picture (b), shows the foreground segmentation using conventional classification. In

(c), the projected probabilities of the 3D-Shape are shown in gray scale. Finally, image (d) shows the foreground segmentation

using the cooperative framework.

Finally, in Section II we showed the close relation between the pixel model update and pixel

background probability. This relation can be exploited by using more-informed probabilistic

sources information that are external to the pixel process. In this section, we have proposed to

use the projection of probabilistic 3D maps that are created form 2D views. This has allowed

to bridge the gap between the planar and volumetric foreground detection tasks. Moreover, the

framework can be extended to incorporate external 3D probabilistic values which are obtained

using other set of techniques. In this respect, the method developed in the following section will

be used to refine the 3D map obtained with the presented method, leading to even better 2D/3D

foreground detections.

C. 3D-Shape Reconstruction Considering Geometric Constraints

The previous subsection has presented an approach to improve 2D and 3D detections in

the SfS framework, by performing a joint 2D-3D classification. However, we have not dealt

with systematic errors, such us those due to occlusions in one or more of the views or wrong

detections in one or more of the views due for instance to a similar color of the object and

its background model. In order to deal with this kind of errors, we proposed in [18], [19] to

examine in more detail the concept of the Visual Hull, and how the 2D errors are propagated

to the 3D reconstruction.

Regarding occlusions, two kind of occlusions of the foreground objects are possible. The first

one is produced by other foreground objects. In this case, Shape from Silhouette algorithms work

correctly, because the voxels occluded in a given view project into foreground pixels, although
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this projection corresponds to the occluding object. The second one is produced by background

objects of the scene, such as tables or other furniture placed in the middle of the scene. In

this case, a classical Shape from Silhouette, or the probabilistic one proposed in Section III-B,

will not reconstruct the corresponding voxels. However, geometric considerations can be used

to improve the situation when the number of occluded views is limited.

The concept of VH is strongly linked to the one of silhouettes’ consistency: A set of silhouettes

is consistent if there exists at least one volume which exactly explains the complete set of

silhouettes, and the VH is the maximal volume among the possible ones. If the silhouettes are

not consistent, then it does not exist an object silhouette-equivalent, that is, the VH does not

exist. Total consistency hardly ever happens in realistic scenarios due to inaccurate calibration

or noisy silhouettes caused by errors during the 2D detection process. In spite of that, most

SfS methods have been designed in the past assuming that the silhouettes are consistent, thus

reconstructing only the part of the volume which projects consistently in all the silhouettes, i.e.,

the volume where the visual cones intersect, without further considerations.

Our proposal in [18], [19] is to use a shape reconstruction method based on the silhouette

consistency principle. Our system validates the regions in the silhouettes which are consistent

in all the projections and adjusts the regions which are not, dealing with 2D errors, i.e., misses

(foreground voxels detected as background) and false alarms (background voxels detected as

foreground), in an unbiased way. By contrast, other SfS systems usually treat differently the 2D

errors on the basis of their type.

In classical SfS, a false alarm in a view does not contribute to a false alarm in 3D unless the

visual cone that is erroneously created intersects simultaneously with other C − 1 visual cones,

where C is the total number of cameras. If the intersection is produced, then the volumetric

points corresponding to the intersection are wrongly reconstructed. Since the reconstructed shape

is consistent because its projection in all the views matches with the silhouettes, then the 2D

false alarm is undetectable. However, the shape is not reconstructed in the parts of the volume

where at least one of the erroneous visual cones does not intersect simultaneously with other

C−1 visual cones. This is the most typical case in scenarios where the major part of the volume

is unoccupied. In such case, the cones produced by 2D false alarms do not intersect with visual

cones from the rest of cameras, then 2D false alarms are inconsistent with the reconstructed

shape, allowing their detection as we will show in the following.
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Contrarily, a miss in a view inhibits the simultaneous intersection of C visual cones in 3D,

leading to an ineluctable miss in the shape. This makes the SfS algorithm highly sensitive to

this type of errors, whereas 2D false alarms do not produce erroneous reconstructions in most

of the cases. 2D misses can also be indirectly detectable, since the projection of the incomplete

Visual Hull reconstructed will not match with the rest of correct silhouettes.

Apart from the methods mentioned in the previous section for dealing with the 3D recon-

struction errors, another approach which is specifically oriented to counteract this asymmetry

between misses and false alarms, is to require the intersection of at least C −P visual cones to

allow a reconstruction, where P is the number of acceptable misses among the set C of cameras.

Although single misses do not block the reconstruction in this approach, the resulting shape is

larger than the real Visual Hull for requiring fewer intersections of visual cones. A drawback of

this approach is that larger hulls are reconstructed either if the silhouettes are consistent or not.

We will use multi camera consistency constraints for detecting systematic errors. We use a

fast technique for estimating that part of the volume which projects inconsistently and propose

a criteria for classifying it either as part of the shape or not by minimizing the probability of

voxel misclassification. Our approach is voxel-based and can be used to correct errors from

any Shape from Silhouette technique, from the standard ones to those which were proposed to

minimize the effects of noise in the foreground detection [30], [8]. In particular, we will develop

its application in the context of the Cooperative 2D-3D framework developed in last section.

1) Shape from Inconsistent Silhouette (SfIS): In Shape from Inconsistent Silhouette (SfIS),

the VH is reconstructed using SfS methods and corrected later with those parts of the volume

which were not correctly classified. 3D misclassifications can be detected by examining the

inconsistent regions of the silhouettes. To detect inconsistent regions, one can project back the

VH and test whether the projections match with the generative silhouettes. Then, the shape

can be reconstructed using a different criterion when there are parts of the volume (Inconsistent

Volume:IV) which project to inconsistent regions in the silhouettes (Inconsistent Silhouettes:ISs).

As we showed in [18], the main problem to solve will be how to choose the minimum number

of inconsistent intersections (T ?) that have to be produced so that it can be determined that a

part of the Shape was missed during the reconstruction process.

The optimal threshold T ? has to be such that if I ≥ T ?, the voxel is better explained as Shape
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than Background:
I ≥ T ? ⇒ decide Shape

I < T ? ⇒ decide Background,
(29)

where I corresponds to the number of inconsistent foreground projections.

In order to find T ?, we only have to express the probability of voxel misclassification for any

P (Err3D[T ]) so that T ? is that one which minimizes it:

T ? = argmin
T

P (Err3D[T ]), (30)

which is a function of the false alarm and miss probabilities that we derived in Section II.

Since voxel classification errors may be due to either false alarms or misses, the probability

that a voxel is misclassified is:

P (Err3D) = PBP (FA3D) + PSP (M3D), (31)

where PB and PS are prior probabilities of a voxel forming part of the Background or Shape,

respectively4, and P (FA3D) and P (M3D) correspond to the probabilities of false alarm and miss

in a voxel. They can be computed, as shown in [18], as a function of the threshold T, being O

the number of consistent foreground projections of a voxel, as:

P (FA3D) =
C−O−1∑

i=max(T,1)

(
C

i

)
P (FA2D)i(1− P (FA2D))C−i, (32)

corresponding to the summation of all possible combinations that trigger a false alarm in a voxel,

and assuming equiprobable Pi(FA2D) = P (FA2D) in all views (i)

P (M3D) =
C−O−1∑

i=max(C−O−T+1,1)

(
C

i

)
P (M2D)i(1− P (M2D))C−i, (33)

where P (M2D) corresponds to the probability that the projection test has not been passed by

error, and assuming equiprobable Pi(M2D) = P (M2D) in all views (i).

SfIS can be very fast, once the optimal thresholds have been computed for each possible case

of occlusion and stored in a lookup table (LUT). Real-time operation of SfIS can be achieved

when using it in combination with fast projection tests. Often, the One Pixel Projection Test is

used for being fast and simple since it simply consists in projecting the point in the center of a

4Priors PS and PB = 1− PS can be simply obtained by computing the detected/total voxel occupancy ratio, for instance.
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voxel into a pixel for each camera views. However, LUTs cannot be used when probabilities of

2D miss and false alarm of the projection test change over time (P (FAPix(t)) and P (MPix(t))).

For example, when a mixture of Gaussians is used to model the Background, the probabilities of

miss and false alarm of the pixels depend on the variances of the Gaussians, which are constantly

changing over time. Under these circumstances, it is important to have a fast search strategy

that can compute the optimal thresholds on-line. The computation of this thresholds on-line has

been introduced in [19].

IV. A UNIFIED COOPERATIVE-SFIS BAYESIAN FRAMEWORK

In the previous sections we have described the probabilistic methods for obtaining 2D sil-

houettes and a cooperative framework that allowed obtaining 3D classifications using 2D prob-

abilities. In addition, the bases for 2D model update using probabilistic 3D information were

also established. In the last section, we have reviewed a tool that allows to reclassify an initial

volumetric estimate making use of the geometrical constraints of the problem. The last question to

be solved is then, how to incorporate the information generated by these geometrical constraints

to the integrated 2D-3D Bayesian framework described. In fact, both Bayesian and geometrical

approaches can cooperate to the benefit of the system.

To obtain a volumetric estimate using geometrical constraints in our 2D-3D Bayesian frame-

work, first, a set of probabilistic pixel models are created for each image in the set-up. Pixel

models can be used for Bayesian classification of 2D silhouettes, which can be later employed

for obtaining 3D reconstructions. In addition, it is possible to maintain those pixel models with

new observations so that their posterior probabilities are always maximum.

This 2D probabilistic information is incorporated to the SfIS approach as follows. Once the

pixel models have been estimated, an initial version of the SfS is obtained using the SfS

cooperative approach described. The cooperative approach makes use of the two-dimensional

probabilistic methods previously mentioned to obtain foreground and background probabilities

for each voxel. These probabilities are then used to classify all the voxels. Contrarily to the

classical SfS approach, in the cooperative approach, 2D probabilistic values are transferred to

3D and used there to classify the volume.

Once a volumetric Shape has been classified, then it is projected back to each one of the

views and compared there with a set of silhouettes that are temporarily classified using only the
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pixel models. The inconsistencies between Shape and Silhouettes are determined and then the

SfIS algorithm is applied as usual so that a refined 3D model is obtained.

The last step corresponds to the process in which the images’ pixels models are updated. Note

that in Bayesian 2D foreground segmentation, the models’ adaptation speed varies according to

the probabilities of each class, as shown in Section II. In the cooperative approach, the voxel

probabilities are projected and used as the adaptation speed of the pixels models. However,

at this point, SfIS provides an extra source of information which can be incorporated to the

probabilistic voxel representation obtained with the cooperative SfS approach. Those voxels

which SfIS reclassifies are therefore reassigned with prior fixed probabilistic values (0.9C for a

3D miss and 0.1C for a 3D false detection).

Finally, the 2D pixel models are updated using (16), after projecting the reassigned 3D

probabilities with the projection rules defined. The main steps of the presented approach are

summarized in the algorithm below.

Algorithm 1 Cooperative SfIS algorithm
Require: Video Sequences for each camera: V S(camera)

1: for all frames do

2: for all camera do

3: Compute 2D Probabilities using (8) and (9)

4: end for

5: Compute 3D Probabilities from 2D Probabilities P(Γ0) using (19) or (24)

6: Binarize 3D Probabilities

7: Perform SfIS (algorithm details available in [19])

8: Assign foreground priors (0.9C) for the voxels reclassified as shape with SfIS

9: Obtain final reconstruction using MAP over 3D Probabilities using (26)

10: Update 2D Models employing 3D probabilities using (28)

11: end for

Incorporating SfIS to the cooperative Bayesian framework clearly improves the overall system

accuracy. Indeed, it is important not to update models with wrong observation values due to

erroneous classifications. SfIS helps in detecting some of these errors in the silhouettes making
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use of the existing redundancy in a multi-camera setup.

This integration of probabilistic and geometrical information compiles all the different aspects

that this paper has addressed. First, the 2D Bayesian approach is used, then the 3D cooperative

background learning is employed to obtain a preliminary set of 3D probabilistic values. This

initial volumetric probabilistic representation is refined using SfIS and, finally, the 2D models

are updated using our unified Bayesian framework.

The reconstructed 3D Shapes provide detailed information of the moving entities of the scene.

This information can be used for the applications of higher semantic content. Some of the

applications are the computation of the trajectories of the moving entities in the scene and the

extraction of activity information. It can also be the input information for a human motion

analysis system using body models [3]. By using these higher level systems, the reconstructed

entities can be separated in humans or objects and their motion can be determined with more

precision.

V. RESULTS

The experiments have been performed using a low-resolution volume, employing voxels with

edge size 2.5 cm, therefore prioritizing fast 3D detections over a more accurate Shape.

Since we are using real-world images with imprecise calibration, we have opted to indirectly

evaluate the performance of the reconstruction methods. To do so, we have compared the

projection of the 3D volumes with a set of five manually classified silhouettes from images

that have been randomly selected in a video sequence. These manually labeled silhouettes are

the ground truth.

Four different techniques have been compared. The first technique is a version of SfS where

a voxel is not classified as Shape if there are more than one views where its projection test fails.

We identify this method as SfS C − 1 intersections in our experiments. The second evaluated

technique is traditional SfS. Third and fourth tested methods are SfIS and cooperative SfIS,

respectively. In this experiment, we have always employed the One Pixel Projection Test in all

the methods for a fair comparison.

The pixel models employed for 2D classifications are a single Gaussian per pixel for the

background and a uniform distribution for the foreground. 2D classifications are obtained using

MAP and the models are updated using EM. The pixels models classification and update steps
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were described in detail in Section II. In this experiment, the models adaptation speed corresponds

to the probability after MAP of 2D models except in the cooperative SfIS approach that uses

the projection of the 3D probabilistic representation described in Section III.

For visual inspection purposes, we present two figures (Fig. 2 and Fig. 3) with results

corresponding to different times and camera views of a scene5. These tests were performed

in the smart-room of the UPC. In the first row of images for all the camera groups, the original

view and some intermediate results are presented and, in the second row, the projections of the

Shapes obtained with the methods under evaluation are shown.

In Fig. 2, the images corresponding to camera 2 in frame number 175 are shown. Note that the

2D only segmentation (2nd column, 1st row) -not using 3D redundancy information- has failed

due to the similar colors of the person in the foreground and the clutter in the background.

However, see that the projected voxel probabilities using the cooperative SfIS approach (3rd

column, 1st row) do correct these errors and, therefore, 2D segmentations using the cooperative

approach are more precise (4th column, 1st row).

Similar problems are observable in Fig. 3. The figure corresponds to frame 650 and shows three

out of the five camera views used in all the methods. Note that 2D misses in a view are transferred

to the rest of views in the SfS approach. The SfS C− 1 approach does not propagate 2D misses

but incorporates many false alarms conducing to larger Shapes and silhouettes’ projections. As

it can be observed from the images, SfIS is a good approach for not propagating 2D misses as

well as for not incorporating many false alarms. The cooperative SfIS approach behaves even

better than SfIS because it informs the 2D models when an error is made and, thus, the pixels

models are updated with a more-informed strategy.

Quantitative results of this experiment are presented in Table I. These results have been

obtained by averaging the number of 2D false alarms, 2D correct detections and 2D misses

over a set of projected reconstructions. These projections correspond to the five views where

the silhouettes were manually labeled to be the ground truth, as previously commented. The

5Due to the great number of images resulting from the methods compared, the number of camera views and the large time

interval evaluated, it is not possible to show here the complete set of results. However, the video sequences with all the evaluated

methods at all the cameras views can be obtained in http://gps-tsc.upc.es/imatge/_Montse/Coop_SFIS.html
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View of Camera 2 2D only Segmentation Cooperative 3D Prob Proj. Segm. after 3D Prob Proj.

SfS C − 1 intersections SfS SfIS Cooperative SfIS

Fig. 2. Silhouettes and 3D volumetric projections corresponding to frame 175 with different techniques using the One Pixel

Projection Test.

verification measures that have been used are defined as follows:

Recall =
#correct Shape detections

#correct Shape detections + #misses

Precision =
#correct Shape detections

#correct Shape detections + #false Shape detections
. (34)

In order to combine precision and recall, we employ the F-measure, also known as the

harmonic mean of precision and recall. The F-measure is the measure that we use to evaluate

the overall performance of the system:

F-measure =
2× Recall× Precision

Recall + Precision
. (35)

To sum up, recall measures how well the classifier detects voxels that form part of the Shape

and precision measures how well it weeds out the voxels in the background. A well balanced

system should have high, similar values of both recall and precision.

Some interesting conclusions can be extracted from the table.

Note that the SfS C − 1 approach has a highest recall rate. Indeed, it also has a very large

number of false alarms and, therefore, a poor precision rate, but it is a good method if we want

to be sure to detect the foreground voxels when they exist.
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View of Camera 1 2D only Segmentation Cooperative 3D Prob Proj. Segm. after 3D Prob Proj.

SfS C − 1 intersections SfS SfIS Cooperative SfIS

View of Camera 2 2D only Segmentation Cooperative 3D Prob Proj. Segm. after 3D Prob Proj.

SfS C − 1 intersections SfS SfIS Cooperative SfIS

View of Camera 3 2D only Segmentation Cooperative 3D Prob Proj. Segm. after 3D Prob Proj.

SfS C − 1 intersections SfS SfIS Cooperative SfIS

Fig. 3. Silhouettes and 3D volumetric projections corresponding to frame 650 with different techniques using the One Pixel

Projection Test.
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View of Camera 2 2D only Segmentation Cooperative 3D Prob Proj. Segm. after 3D Prob Proj.

SfS C − 1 intersections SfS SfIS Cooperative SfIS

Fig. 4. Silhouettes and 3D volumetric projections corresponding to one frame captured in the smart room of IBM Czech

Republic research labs. Results obtained for precision, recall and F-measure are 0.48, 0.93, 0.63 for SfS C-1, 0.62, 0.46, 0.53

for SfS, 0.69, 0.77, 0.73 for SfIS and 0.67, 0.86, 0.75 for the cooperative SfIS approach, respectively.

View of Camera 4 2D only Segmentation SfS Cooperative SfIS

Fig. 5. Silhouettes and 3D volumetric projections corresponding to one frame captured in the smart room of the Istituto Trentino

di Cultura (ITC) research labs. Results obtained for precision, recall and F-measure are 0.85, 0.40, 0.54 for SfS and 0.93, 0.71,

0.80 for the cooperative SfIS approach, respectively.

In contrast, traditional SfS is very precise, even more than SfIS. Note that SfS detects fewer

voxels but it is very good at asserting that those voxels form part of the Shape.

SfIS and cooperative SfIS are the most balanced methods. They have high precision and recall

rates and their F-measures are the best. SfIS improves when combined with the cooperative

Bayesian framework since the 3D information is continuously flowing to 2D in a probabilistic

manner.

Similar considerations can be made from the set of images presented in Fig. 4 and Fig. 5,

March 7, 2008 DRAFT



32

TABLE I

SYSTEM EVALUATION THROUGH THE PROJECTION OF 3D RECONSTRUCTIONS IN VIDEO SEQUENCES

Ground truth SfS (C − 1 int.) SfS SfIS Coop. SfIS

# Correct foreground det. 32270 27471 15023 20445 25061

# False alarms 0 29760 5077 7529 6872

# Misses 0 4808 13256 11834 7218

Recall 1 0.85 0.53 0.63 0.77

Precision 1 0.48 0.75 0.73 0.78

F-measure : 2×Recall×Precision
Recall+Precision 1 0.62 0.62 0.68 0.77

captured in other scenarios. The figures are presented together with the values for precision,

recall and F-measure for different reconstruction methods.

In conclusion, the cooperative SfIS approach definitely has the best F-measure of them, as

simple visual inspection of the images confirms and it is the method that performs best when

operating with video sequences.

VI. CONCLUSION

In this paper we have proposed a unified framework for the planar and volumetric foreground

detection tasks. The proposed framework operates in a collaborative manner by transferring

more-informed 3D probabilistic information back to the planar detectors in each image that, in

turn, also become more precise.

The cooperative planar-volumetric detector has been achieved by first extending planar de-

tection techniques to a Bayesian framework. We have set the bases for Maximum a Posteriori

classification and introduced model update equations based on Expectation Maximization. This

shows that for proper Bayesian update, new background observations have to be incorporated

to the background model proportionally to the probability of the background class. This has

permitted us to employ the update scheme of the planar activity detectors to include higher-

level probabilistic information obtained by other means. In this way, we have developed a new

framework in which 3D probabilistic information is attained from 2D probabilistic maps and

then projected back to each one of the original views to be used as the update speed of the two-

dimensional background models. Finally, we have reexamined the volumetric activity detection
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task. Following a different line of thought, we have studied the coherence between planar

and volumetric detectors and incorporated a novel technique, called Shape form Inconsistent

Silhouette (SfIS). Basically, SfIS is able to reclassify some of the initial volumetric detections

so that the misclassification error is minimized. SfIS can be used to extract better volumes by

minimizing the effects that inconsistencies have over the reconstructed Shape. In addition, SfIS

can also be used to recover errors in the silhouettes from more-informed decisions made at the

volume level, where individual detections at the 2D level are compared for consistency. Finally,

reassigned classifications can be introduced back into our Bayesian cooperative framework

providing better long-term video activity detections in both the 2D and 3D domains.
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