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Segmentation and tracking of multiple 
moving objects for intelligent video 
analysis

L-Q Xu, J L Landabaso† and B Lei

This paper aims to address two of the key research issues in computer vision — the detection and tracking of multiple
objects in the cluttered dynamic scene — that underpin the intelligence aspects of advanced visual surveillance systems
aiming at automated visual events detection and behaviour analysis. We discuss two major contributions in resolving these
problems within a systematic framework. Firstly, for accurate object detection, an efficient and effective scheme is proposed
to remove cast shadows/highlights with error corrections based on a conditional morphological reconstruction. Secondly,
for effective tracking, a temporal-template-based tracking scheme is introduced, using multiple descriptive cues (velocity,
shape, colour, etc) of the 2-D object appearance together with their respective variances over time. A scaled Euclidean
distance is used as the matching metric, and the template is updated using Kalman filters when a matching is found or by
linear mean prediction in the case of occlusion. Extensive experiments are carried out on video sequences from various real-
world scenarios. The results show very promising tracking performance.

1. Introduction
In recent years, there has been considerable interest in
visual surveillance of a wide range of indoor and outdoor
sites by various parties. This is manifested by the
widespread and unabated deployment of CCTV cameras
in public and private areas. In particular, the increasing
connectivity of broadband wired and wireless IP
networks, and the emergence of IP-CCTV systems with
smart sensors, enabling centralised or distributed
remote monitoring, have further fuelled this trend. It is
not uncommon nowadays to see a bank of displays in an
organisation showing the activities of dozens of
surveillance sites simultaneously. However, the
limitations and deficiencies, together with the costs
associated with human operators in monitoring the
overwhelming video sources, have created urgent
demands for automated video analysis solutions.
Indeed, the ability of a system to automatically analyse
and interpret visual scenes is of increasing importance
to decision making, offering enormous business
opportunities in the sector of information and com-
munications technologies.

In monitoring a visual scene that is cluttered and
busy, the importance of detection and tracking of any
number of moving objects of interest can never be

overestimated. This is the central element of an object-
based intelligent video surveillance system, of which the
two types of application are:

• to allow real-time detection of unforeseen events
that warrant the attention of security guards or law
enforcement officers to take preventive actions [1],

• to enable tagging and indexing of interesting
(customer-defined) scene activities/statistics into a
metadata database for rapid forensic analysis [2].

In addition, object detection and tracking are the
building blocks of higher-level vision-based or assisted
event monitoring and management systems with a view
to understanding the complex actions, interactions, and
abnormal behaviours of objects in the scene. The range
of applications include detection of criminal behaviours
in banks [3], marketing data analysis in shopping malls
[4, 5], and well-being monitoring at home [6].

1.1 Surveillance systems — challenges
Vision-based surveillance systems can be classified in
several different ways, depending on the conditions in
which they are designed to operate:

• indoor, outdoor or airborne,† Technical University of Catalunya, Spain
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• the type and number of sensors,

• the objects and level of details to be tracked.

In this paper we focus on processing videos captured
by a single fixed outdoor CCTV camera overlooking
areas where there are a variety of vehicle and/or people
activities, though the techniques developed can be
applied to indoor scenarios.

There are typically a number of challenges
associated with the chosen scenario in a realistic
surveillance application environment.

• Natural cluttered background

A natural outdoor environment is usually noisy and
difficult to characterise. The video sequences
captured are also often subjected to a compression
process such as MPEG or JPEG before being
transmitted via a network or stored for analysis.
This introduces coding-induced noise into the
already noisy imaging sources.

• Dynamic background

The scene background is not normally a fixed
structure, but often changes with time. In the case
of a swaying tree or flag, each pixel in the
background cannot be fully characterised by a
single colour; two or more different appearances
could be alternating.

• Illumination changes

Outdoor surveillance systems suffer heavily from
the change of weather conditions. Rain, sunset,
sunrise, as well as floating clouds can have a
dramatic impact on the scene illumination. Hence,
they will degrade the performance of object
detectors and trackers if these factors are not
accommodated properly.

• Occlusions

In a typical outdoor scene with many moving
objects, occlusion is a crucial issue that needs
special treatment. The occlusion can happen in the
following cases:

— inter-object where objects occlude each other —
this problem becomes acute when two or more
objects enter into the scene while occluding each
other,

— thin scene structures — thin objects in the scene
such as trees or streetlights break a moving object
into several (typically two) separate parts,

— large scene structures — because of large scene
structures such as buildings, moving objects may

disappear completely for a period of time, and then
re-appear, e.g. a pedestrian walking behind a
parked or moving van,

• Object entries and exits

Before a newly detected object in the scene is
confirmed, it is important to know if this is a new
entry, and if so, how it is to be modelled, and
equally important is the decision about how and
when to delete an existing object after its track is
lost from the scene for some time,

• Shadows and highlights

These are more problematic when tracking is
carried out in outdoor environments, as very strong
shadows or long shadows, larger than the actual
object, are not uncommon; in addition, there are
two types of shadow that need different treatment:

— cast-shadows — these are areas in the
background projected by an object in the direction
of light rays, which can, without careful
consideration, be easily taken as part of an object,
causing difficulties to the ensuing object tracking
and classification tasks,

— self-shadows — these are parts of the object that
are not illuminated by direct light, which a simple
shadow-removal procedure is likely to get rid of,
resulting in an inaccurate object silhouette.

1.2 Related work
These technical challenges, together with the ever-
increasing demand of intelligent video surveillance
applications, have led over recent years to extensive
research activities that propose various new ideas,
solutions and frameworks for robust object detection
and tracking [7, 8]. Most adopt a type of ‘background
subtraction’ technique to firstly detect foreground
pixels. A connected component analysis (CCA) is then
followed to cluster and label the foreground pixels into
separate meaningful blobs, from which some inherent
appearance and motion features can be extracted.
Finally, there is the blob-based tracking process aiming
to find persistent blob correspondences between
consecutive frames. In addition, most application
systems also deal with the issues of object
categorisation or identification (and possibly detailed
parts analysis) either before [7] or after [9] the tracking
is established.

With regard to the ‘background subtraction’
technique, the background scene structures are usually
modelled pixel-wise by various statistically based
learning techniques using features such as intensities,
colours, edges, textures, etc [10, 11]. The models
employed can be a uni-modal Gaussian [12, 13], a
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Gaussian mixture [14, 15], a non-parametric kernel
density function [16], or simply temporal median
filtering [9]. The issues of evaluation and maintenance
of background models are discussed by Gao et al [17]
and Toyama et al [18].

 One major issue in background subtraction
concerns shadow detection and removal [19]. An
effective shadow removal scheme should remove
completely the cast shadows, but not distort a
foreground object’s shape by removing extremities or
deleting possible self-shadows. The use of a colour
constancy model for shadow detection has been well
studied by Horprasert et al [20], assuming that the
chromaticity be the same while only intensity differs
between the shadow and background. However, in the
case where shadow removal based on colour properties
alone may not be effective or colour information is not
available, variants of gradient information can be
exploited to fulfil the task [21]. Combinations of
multiple cues (e.g. colour, normalised colour, gradient)
were also considered by Javed et al [11] and McKenna et
al [13]. Often, appropriate heuristic rules have to be
adopted [21, 13] in order to accurately recover the true
shape of an object.

Regarding the matching method and the choice of
suitable metrics, the inherent heterogeneous nature of
features extracted from the 2-D blobs has motivated
some researchers to use only a few features, e.g. the
size and velocity [8] for motion correspondence, and the
size and position with Kalman predictors [14]. Others
using more features conducted the matching in a
hierarchical manner, e.g. in the order of centroid,
shape, and then colour as discussed by Zhou and
Aggarwal [9]. Note that if certain a priori factors are
known, e.g. the type of an object to be tracked is a
single person, then a more complex dynamic
appearance model of the silhouette can be employed
[7]. Also, in Elgamal et al [16], the kernel density
function was used to model the colour distribution of an
object to help detect and track individual persons who
start to form a group and occlude each other; McKenna
et al [13] provides another relevant example where
probabilistic object models were exploited.
Furthermore, domain knowledge of a physical site can
be built beforehand for more effective management of
object entry and exit [22] and for better handling the
object occlusion issues in some applications [23].

In this paper we describe an effective multi-object
detection and tracking system in which a few novel
ideas are introduced to deal with these challenging
issues. This leads to the enhancement of several aspects
of state-of-the-art object detection and tracking
techniques. In particular, we employ a technique to
suppress the falsely detected foreground pixels, caused
mainly by video compression artefacts. A novel

framework is introduced for effective cast shadows/
highlights removal while preserving the original object
shape. An integrated matching strategy is discussed,
using the scaled Euclidean distance metric, in which a
feature set characterising a foreground object is used
simultaneously, taking care of both the scale and
variance of each of the features. This matching method
is not only robust (in the sense of tolerating sudden
speed change or direction change), but also allows an
easy inclusion of more extracted features, if necessary,
leaving room for future enhancement. Figure 1 depicts
schematically the block diagram of our proposed object
detection and tracking system, which comprises two
named major functional modules, each in turn
containing a number of processing steps. The object
classification module is included for completeness,
though it will not be discussed in this paper; interested
readers are referred to Javed and Shah [8] or Zhou and
Aggarwal [9] for more information.

The paper is structured as follows. In the next
section, techniques for pixel-domain analysis, leading to
segmented foreground object blobs, are discussed, with
emphasis on the introduction of a novel shadow removal
scheme. Section 3 is devoted to discussion of multi-
object tracking, including the use of a temporal object
template, the adoption of a parallel matching procedure
and the partial occlusion handling. Section 4 presents
the experimental studies of this system with various
real-world test sequences undergoing a variety of video
compression procedures. The paper concludes in
section 5 with a discussion of future research direction
and system enhancement.

2. Moving objects segmentation with 
shadow removal

As depicted in Fig 1, the first issue to be addressed is
‘background learning’, designed for segmenting scene
pixels forming part of the foreground moving objects via
background subtraction. As in Javed and Shah [8], the
adaptive background learning method proposed by
Stauffer and Grimson [14] is adopted. At each pixel
location, a Gaussian mixture model (GMM) is used to
model the temporal colour variations in the imaging
scene. The Gaussian distributions are updated with
each incoming frame; the models are then used to
determine if an incoming pixel is generated by the
background process or a foreground moving object.
This model allows a proper representation of the
background scene undergoing slow and smooth lighting
changes (but not suddenly turning on or off, e.g. caused
by floating clouds) and momentary and random
variations such as trees or flags swaying in the wind.

Considering that the foreground pixels thus
obtained are likely to suffer from false detections due to
imaging and compression noise as well as camera jitter,
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a false-foreground-pixel-suppression procedure is intro-
duced to alleviate this problem. The idea is that, for
each pixel x = {x, y} initially classified as a foreground
pixel, the GMMs of its 8-connected neighbouring pixels
are examined. If the majority of them (>5) agree that x is
a background pixel, then x is considered as a false
detection and removed from foreground.

2.1 A novel shadow/highlight removal scheme
Once the foreground pixels are identified, a further
detection scheme is applied to locate areas likely to be
cast shadows or highlights. In the following, we discuss
a novel scheme for effective shadow (highlights)
detection using both colour and texture cues. Since in
any shadow-removal algorithm, misclassification errors
often occur, resulting in distorted object shapes, the

core of this scheme is the use of a technique capable of
correcting these errors. The technique is based on a
greedy thresholding followed by a conditional morpho-
logical dilation. The greedy thresholding removes all
shadows together with some true foreground pixels.
The conditional morphological dilation then aims to
recover only those deleted true foreground pixels
constrained within the original foreground mask.

The working mechanism of this novel scheme is
shown in Fig 2 and comprises the following four steps.

• Colour-based detection

As the first step, a simplified version of the colour
constancy model introduced by Horprasert et al
[20] is employed. This model evaluates the

Fig 2 The schematic diagram of the novel shadows/highlights removal approach made up of four main processing steps. The input and 
output of each block are as follows — (a) the adaptive background image; (b) initial foreground segmentation result; (c) shadows/high-

lights removal using colour constancy model; (d) the result after shadows assertion using gradient/texture information, generating a 
‘skeleton’ image; and (e) final reconstructed foreground regions.
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variability in both brightness and colour distortions
in RGB colour space between the foreground pixels
and the adaptive background. The background
reference image is obtained from the mean of the
most probable Gaussian component of the GMM
modelling each pixel. Possible shadows and
highlights are then detected by certain thresholding
decisions. It was observed though that this
procedure is less effective in cases where the
objects of interest have similar colours to those of
presumed shadows.

• Texture-based detection

The same regions with or without cast shadows
tend to retain similar texture (edge) properties
despite the difference in illumination. To exploit
this fact, the Sobel edge detector is used to
compute the horizontal and vertical gradient for
both the foreground pixels and their corresponding
background ones. For each pixel, the Euclidean
distance with respect to the gradients is evaluated
over a small neighbourhood region, which is then
employed to examine the similarity between the
foreground and reference pixel. If the distance is
less than a certain threshold, then a possible
shadow pixel is suggested.

• Assertion procedure

Based on the detection results from the above two
steps, an assertion procedure is introduced, which
confirms a pixel as belong to foreground only if
both the above two outputs agree. Output from
this procedure is a seed ‘skeleton’ image (as shown
in Fig 4(c)) free of shadows and highlights.

• Conditional object shape reconstruction

The above processing steps are designed to
effectively remove cast shadows and highlights,
though they also invariably delete some foreground
object pixels (self-shadows), causing the distortion
of a real object’s shape. Therefore, a morphology-
based conditional region reconstruction step is
employed to restore each object’s original shape
from the ‘skeleton’ image.

The mathematical morphology reconstruction filter
uses an image called ‘marker’ as the seed to rebuild an
object inside an original image called ‘mask’. In our
case, the ‘marker’ image (see Fig 4(c)) is a binary image
in which a pixel is set at ‘1’ when it corresponds to a
foreground, not a cast shadow/highlight, pixel. On the
other hand, the ‘mask’ image (see Fig 4(b)) is also a
binary image where a ‘1’ pixel can correspond to a
foreground pixel, or a cast shadow/highlight pixel, or
speckle noise.

It is highly desirable that the ‘marker’ image,
contains only real foreground object pixels, i.e. not any
shadow/highlight pixels so that those regions will not be

reconstructed. Therefore, the use of very aggressive
thresholds is necessary in the colour-based removal
process to ensure that all the shadow/highlight pixels
are removed. A speckle noise removal filter is also
applied to suppress isolated noisy foreground pixels that
remain and to obtain a good quality ‘marker’ image, .

The speckle removal filter is also realised using
morphological operators as shown in equation (1):

where M is the binary image generated after shadow
removal and assertion process; N denotes the
structuring element, shown in Fig 3, with its origin at
the centre.

The dilation operation  in equation (1)
identifies all the pixels that are four-connected to (i.e.
next to) a pixel of M. Hence,  identifies all the pixels
that are in M and also have a four-connected neighbour,
eliminating the isolated pixels in M.

As a result, only the regions not affected by noise
which are clearly free of shadows/highlights (Fig 4(c)) are
subject to the shape reconstruction process shown in
equation (2):

where Ms is the ‘mask’,  the ‘marker’, and SE the
structuring element whose size usually depends on the
size of the objects of interest, although a 9 × 9 square
element proved to work well in our tests.

Fig 3 The 3 × 3 morphological structuring element used for 
speckles filtering. Note that the origin is not included.

Basically this process consists of a dilation of the
‘marker’ image, followed by the intersection with the
‘mask’ image. The underlying idea is that there should
be a fairly large number of valid object pixels remaining
after the shadow removal processing. These pixels are
appropriate for leading the reconstruction of
neighbouring points as long as they form part of the
silhouette in the original blob (prior to the shadow
removal as in Fig 4(b)). The finally reconstructed blobs
are shown in Fig 4(d).

This novel combined scheme gives favourable
results compared to the current state-of-the-art ones to
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suppress shadows/highlights. Figure 4 illustrates an
example of this scheme at various processing stages.

3. Multi-object tracking using temporal 
templates

After the cast shadows/highlights removal procedure, a
classic 8-connectivity connected component analysis
(CCA) is performed to group all the pixels presumably
belonging to individual objects into respective blobs.
The blobs are temporally tracked throughout their
movements within the scene by means of temporal
templates. Figure 5 illustrates an example where the
three objects (indexed by l ) are tracked to frame t,
which seek to match the newly detected candidate blobs
(indexed by k) in frame t +1. One of these four
candidates (near the right border) just enters into the
scene, for which a new template has to be created.

3.1 Temporal templates
Each object of interest in the scene is modelled by a
temporal template of persistent characteristic features.
In the current studies, a set of five significant features is

used, describing the velocity, shape, and colour of each
object (candidate blob) as shown in Table 1.

Therefore at time t, we have, for each object l
centred at (plx, ply), a template of features: 

There are two points that need special clarification
as follows:

(a) source video (b) mask

(c) marker (d) final foreground mask

Fig 4 (a) A snapshot of a surveillance video sequence, the cast shadows from pedestrians are strong and large; (b) the result of initial 
foreground pixels segmentation, the moving shadows being included; (c) the ‘skeleton’ image obtained after the shadow removal 

processing; and (d) the final reconstructed objects with erroneous pixels corrected.

objects (template) candidate blobs

{k}{l}

frame t frame t + 1

Fig 5 The illustration of object tracking between two consec-
utive frames. On the left are the three objects already tracked, 

for which feature template models exist; on the right are the four 
newly detected candidate blobs in frame t +1, for which matching 
to the corresponding tracks are sought, noting the far right one 

just enters the viewing scene.

Ml t( ) vl sl rl θl cl, , , ,( )=
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• prior to matching the template l with a candidate
blob k in frame t +1, centred at (p′kx, p′ky) with a
feature vector Bk(t +1) = (v ′k, s′k, r ′k, θ′k, c ′k),
Kalman filters are used to update the template by
predicting, respectively, its new velocity, size,
aspect ratio, and orientation in  — the
velocity of the candidate blob k is calculated as:

• the difference between the dominant colour of
template l and that of candidate blob k is defined in
equation (3):    

The mean  and variance Vl (t) vector of a
template l are updated when a matching candidate blob
k is found. And they are computed using the most
recent L blobs on the track, or over a temporal window
of L frames (e.g. L = 50). The set of Kalman filters,
KFl (t), is updated by feeding with the corresponding
feature value of the matched blob.

It is clear that the variance of each template feature
should be analysed and taken into account in the
matching process outlined in section 3.2 to achieve a
robust tracking result. 

3.2 Matching procedure
We choose to use a parallel matching strategy in
preference to the serial matching ones such as that used
by Zhou and Aggarwal [9]. The next issue is to employ a
proper distance metric that best suits the problem
under study. As described above, the template for each
object being tracked has a set of associated Kalman
filters, each of which predicts the expected value for one
feature (except for the dominant colour) in the next
frame. Obviously, some features are more persistent for
an object, while others may be more susceptible to
noise, and different features normally assume numerical
values of different scales and variances. Euclidean
distance does not account for these factors as it will
allow dimensions with larger scales to dominate the
distance measure.

One way to tackle this problem is to use the
Mahalanobis distance metric, which takes account of
not only the scale and variance of a feature, but also its
correlation with other features based on the co-variance
matrix. Thus, if there are correlated features, their
contributions are weighted appropriately.

Though, for simplicity, in the current work, a scaled
Euclidean distance shown in equation (4) is adopted to
match the template l and a candidate blob k, assuming
a diagonal co-variance matrix. For a heterogeneous data
set, this is a reasonable distance definition:

where the index i runs through all the N =5 features of
the template, and is the corresponding component of
the variance vector Vl (t). Note exceptionally that, as
discussed in section 3.1, on the dominant colour
feature, it can be viewed as, . The
initial values of all components of Vl (t ) are either set at a
relatively large value or inherited from a neighbouring
object.

Having defined a suitable distance metric, the
matching process can be described in greater detail as
follows.

Given that in frame t, for each object l being tracked
so far, we have: 

• Step 1

For each new frame t +1, all the valid candidate
blobs {k} are matched against all the existing tracks
{l } via equation (4) by way of the template
prediction, , variance vector Vl (t ) and
Bk (t + 1). A ranking list is then built for each object l
by sorting the matching pairs from low to high cost.
The matching pair with the lowest cost value D(l, k),
which is also less than a threshold, THR (e.g.10 in
our experiments), is identified as a match pair.

• Step 2

If object l is matched by a candidate blob k in frame
t + 1, then the track length TK(t + 1) is increased by
1, and the normal updates for l are performed. We

Table 1 The five significant features for each object.

v = (vx, vy) the velocity at its centroid (px, py)

s the size, or number of pixels contained

r the ratio of the major and minor axis of the best-fit 
ellipse of the blob [24]; it is a better descriptor of 
an object’s posture than its bounding box

θ the orientation of the major-axis of the ellipse

c the dominant colour, computed as the principal 
eigenvector of the colour co-variance matrix for 
pixels within the blob [9]

M̂ l t 1+( )

v ′k p ′kx p ′ky,( )
T

plx ply,( )T–=

dlk cl c ′k,( ) 1
cl ck•

cl ck⋅
----------------------–= ...... (3)

Ml t( )

Ml (t) the template of features

( (t ), Vl (t )) its mean and variance vectors

KFl (t) the related set of Kalman filters

TK(t) = n the counter of tracked frames, i.e. current track 
length

MS(t) = 0 the counter of lost frames

(t +1) the expected values in frame t+1 by Kalman 
prediction

D l k,( )
xli yki–( )2

σ2
l i

------------------------
i 1=

N

∑= ...... (4)
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obtain Ml (t + 1) = Bk (t + 1), as well as the mean and
variance ( ) respectively, as dis-
cussed in section 3.1, and correspondingly the
Kalman filters KFl (t + 1) .

• Step 3

If object l has found no match at all in frame t + 1,
presumably because it is missing or occluded, then
the mean of its template is kept the same, or

; the lost counter MS(t +1) is
increased by 1. The object l is carried over to the
next frame, though the following rules apply:

— if object l has been lost for a certain number of
frames, or MS(t +1) ≥ MAX_LOST (e.g. 10), then it is
deleted from the scene; the possible explanations
include becoming static (merged into background),
entering into a building/car, or leaving the camera’s
field of view,

— otherwise, the variance (Vl (t + 1) is adjusted
according to equation (5) to assist the tracker to
recover the lost object that may undergo un-
expected or sudden movements:

where δ = 0.05 is a good choice. As no observation
is available for each feature, the latest template
mean vector is used for prediction, which states
that .

Note that the MAX_LOST is measured in terms of
number of frames; in actual applications the value
should be adjusted in accordance with the video
capture frame rate and maximum speed of a
moving object, if possible.

• Step 4

For each candidate blob k in frame t + 1 that is not
matched, a new object template Mk (t + 1) is
created from Bk (t + 1). The choice of initial variance
vector Vk (t + 1) needs some consideration — it can
be copied from either a very similar object already
in the scene or typical values obtained by prior
statistical analysis of tracked objects. This new
object, however, will not be declared (marked) until
after it has been tracked for a number of frames, or
TK (t + 1) > = MIN_SEEN (e.g. 10), so as to discount
any short momentary object movements; otherwise
it will be deleted.

3.3 Occlusions handling
In the current approach, no use is made of any special
heuristics on areas where an object may enter (exit) into
(from) the scene. The possible background structures
that may occlude moving foreground objects are also
unknown a priori [23]. Objects may just appear or dis-

appear in the middle of the image, and, hence, posit-
ional rules are not enforced, as opposed to Stauffer [22].

To handle the occlusion issue with a priori
information, a simple heuristic is adopted. Every time
an object fails to find a matching candidate blob (step 3,
section 3.2), a test on occlusion is carried out. If the
object’s predicted bounding box overlaps a certain new
candidate’s bounding box, then this object is marked as
‘occluded’. If this new candidate occludes more than
one ‘unmatched’ object, it is deleted. The template of
each ‘occluded’ object is blindly updated as discussed
above from the previous tracking results until it gets
matched again or removed after being missing for
certain frames.

As discussed before, during the possible occlusion
period, the object template of features is updated using
the average of the last 50 correct predictions to obtain a
long-term tendency prediction. Occluded objects are
better tracked using the averaged template predictions.
In doing so, small erratic movements in the last few
frames are filtered out. Predictions of positions are
constrained within the blob that occludes the current
‘occluded’ object.

4. Experimental results
The system has been evaluated extensively on standard
test sequences such as the set of benchmarking image
sequences provided by PETS’2001 and a range of our
own captured image sequences under various weather
conditions and video compression formats.

For PETS sequences, original images are provided in
JPEG format, and their frame size is 768 × 576 pixels. In
our experiments though, the sub-sampled images of
size 384 × 288 pixels were used. Also, an AVI video file
was created for each image sequence using an XviD
codec, introducing a second temporal compression.
Apart from these compression artefacts, the imaging
scenes also contain a range of difficult defects, including
thin structures, window reflections, illumination
changes due to slowly moving clouds, and swaying
leaves in trees. Our system has dealt with all these
problems successfully, and handles very well the
complex occlusion situations. Figure 6 shows an
example where the white van is occluded by a thin
structure, or streetlight pole (left), and subsequently a
group of people are largely blocked by the van for a few
frames (middle).

For the other sequences, a CIF-size image frame
(352 × 288 pixels) is used. The original video was
captured at 25 fps using Mini DV format, and then
converted to MPEG-1, followed by an XviD com-
pression. Figure 7 illustrates an example of a complex
and difficult situation where large and strong shadows

Ml t 1+( ) Vl t 1+( ),

Ml t 1+( ) Ml t( )=

σ2

i
t 1+( ) 1 δ+( )σ2

i
t( )= ...... (5)

Ml t 1+( ) Ml t( ) Ml t( )+=
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exist and three objects (two people and a van) pass by
each other. Figure 8 gives another example displaying
the results obtained after different processing stages of
the system. The system runs at an average rate of 12
fps on a PC with a single 2 GHz Pentium-4 processor.

Fig 8 Results showing different processing stages of the system
(anti-clockwise from top left) — the source video image overlaid
with objects being tracked; the learned background image; the
foreground mask output from initial background subtraction and
thresholding; the final  restored  foreground mask  after  noise
 suppression and shadow removal.

Some problems occurred when a few individually
moving objects start to join each other and form a
group. These objects are correctly tracked within the
limit of predefined MAX_LOST frames as if they were
occluding each other. Beyond this limit the system
decides that they have disappeared, and creates a new
template for the whole group. Other problems may
occur when objects abruptly change their motion trajec-
tories during occlusions — sometimes the system is able
to recover the individual objects after the occlusion, but
on other occasions new templates are created.

The system copes with shadows and highlights
satisfactorily in most cases, though very long cast
shadows may not always be completely removed. A
small defect of the algorithm is that the reconstructed
region contains a small patch of shadow in an object’s
exterior where the cast shadow starts (see the feet of
the people in Fig 4(d)). This patch is about half the size
of the structuring element used, and is produced during
the conditional dilation. Intersection with the mask
image cannot suppress this segment as all the
shadowed regions form part of the mask.

5. Conclusions
In this paper, we have presented a vision-based system
for accurate segmentation and tracking of moving
objects in cluttered and dynamic outdoor environments

 

  Fig 6 An example (from PETS’2001) illustrating one of the difficult tracking situations that the system handles successfully, in which 
the moving white van, first occluded by the thin streetlight pole, then partially occludes a group of walking people (from left to right): 

before, during, and after occlusion. The tracking labels have been correctly kept.

  Fig 7 Another example illustrating the success of the system in dealing with severe shadows problem and complex dynamic occlusion 
situation. Two people were walking towards each other across the pedestrian crossing, whilst a van is approaching and slowing down 

(from left to right) — before, during, and after their intersection.
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surveyed by a single fixed camera. Each foreground
object of interest has been segmented and shadows/
highlights removed by an effective scheme. The 2-D
appearance of each detected object blob is described by
multiple characteristic cues including velocity, size,
elliptic-fit aspect ratio, orientation, and dominant
colour. This template of features is used, by way of a
scaled Euclidean distance-matching metric, for tracking
between object templates and the candidate blobs
appearing in the new frame. In completing the system,
we have also introduced technical solutions dealing with
false foreground pixel suppression, and temporal
template adaptation. Experiments have been conducted
on a variety of real-world wide-area scenarios under
different weather conditions. Good and consistent
performance has been confirmed. The method has
successfully coped with illumination changes, partial
occlusions, clutters, and scale and orientation variations
of objects of interest — and, especially, it is not
sensitive to noise incurred by the camera imaging
system and different video codec.

Having undertaken this first but significant step
towards developing a fully functional intelligent video
surveillance system, several aspects will be further
explored to enhance the robustness and consistency.

• Shadow removal

As previously noted, removing cast shadows while
preserving self shadows is always a conflicting goal.
Thanks to the skeleton-based conditional
reconstruction method for error correction, we can
start with a very greedy and simple shadow removal
scheme. It works well most of the time, though in
certain cases where a foreground object happens to
have similar properties to that of the shadowed
background, it would fragment the object into
several smaller parts, thus causing problems for the
tracking procedure. It is necessary to devise a new
procedure to link those parts into a single object.

• Matching

For the matching problem, currently all features
involved are treated separately and identically. A
further investigation could be done to evaluate the
impact of each feature on the matching score, and
then choose to use the more significant ones as well
as determine their relative contributions in the final
distance metric calculation.

• Occlusion

As regards handling the occlusion problem, we
have used a simple heuristic at the moment. It fails
in dealing with more sophisticated multiple object
occlusion or long total occlusions. The method can
be improved if, during an object’s presence in the

scene, more tracking states than the current three
(‘matched’, ‘occluded’, and ‘disappeared’) are
introduced, plus employing more heuristic rules in
the management of these state transitions. On the
other hand, the use of a probabilistic texture [5] or
colour appearance model [25] may help find a
better solution to resolving occlusions, especially
for people tracking indoor environments where
more information is available concerning target
objects and their interactions.

References
1 Lipton A J, Heartwell C H, Haering N and Madden D: ‘Automated

video protection, monitoring and detection of critical
infrastructure’, IEEE Aerospace and Electronic Systems Magazine,
18, No 5 (May 2003).

2 Perrott A J, Lindsay A T and Parkes A P: ‘Realtime multimedia
tagging and content-based retrieval for CCTV surveillance
system’, Proc of SPIE: Internet Multimedia Management Systems
III, Boston (2002).

3 Georis B, Maziere M, Bremond F and Thonnat M: ‘A video
interpretation platform applied to bank agency monitoring’, Proc
of IEE IDSS’04, pp 46—50, London (February 2004).

4 Haritaoglu I and Flickner M: ‘Detection and tracking of shopping
groups in stores’, Proc of IEEE CVPR’2001, Kauai, Hawaii, USA
(December 2001).

5 Senior A: ‘Tracking people with probabilistic appearance models’,
Proc 3rd IEEE Intl Workshop on Performance Evaluation of
Tracking and Surveillance (PETS’2002), pp 48—55, Copenhagen,
Denmark (June 2002).

6 Cucchiara R, Grana C, Prati A, Tardini G and Vezzani R: ‘Using
computer vision techniques for dangerous situation detection in
domotics applications’, Proc of IEE IDSS’04, pp 1—5, London
(February 2004).

7 Haritaoglu I, Harwood D and Davis L: ‘W4: real time surveillance
of people and their activities’, IEEE Trans. on Pattern Analysis and
Machine Intelligence, 22, No 8 (August 2000).

8 Javed O and Shah M: ‘Tracking and object classification for
automated surveillance’, Proc of ECCV’2002, Copenhagen,
Denmark, pp 343—357 (May—June 2002).

9 Zhou Q and Aggarwal J K: ‘Tracking and classifying moving objects
from video’, Proc of 2nd IEEE Intl Workshop on Performance
Evaluation of Tracking and Surveillance (PETS’2001), Kauai,
Hawaii, USA (December 2001).

10 Li L and Leung M K H: ‘Integrating intensity and texture
differences for robust change detection’, IEEE Trans on Image
Processing, 11, No 2, pp 105—112 (2002).

11 Javed O, Shafique K and Shah M: ‘A hierarchical approach to
robust background subtraction using color and gradient
information’, Proc of IEEE Workshop on Motion and Video
Computing, Orlando, USA (December 2002).

12 Jabri S, Duric Z, Wechsler H and Rosenfeld A: ‘Detection and
location of people in video images using adaptive fusion of color
and edge information’, Proc of ICPR’2000, Barcelona, Spain
(September 2000).

13 McKenna S J, Jabri S, Duric Z, Rosenfeld A and Wechsler H:
‘Tracking groups of people’, Computer Vision and Image
Understanding, 80, pp 42—56 (2000).



Segmentation and tracking of multiple moving objects for intelligent video analysis

BT Technology Journal • Vol 22 No 3 • July 2004150

14 Stauffer C and Grimson W E L: ‘Learning patterns of activity using
real-time tracking’, IEEE Trans on Pattern Analysis and Machine
Intelligence, 22, No 8 (August 2000).

15 Lee D S, Hull J J  and Erol B: ‘A Bayesian framework for Gaussian
mixture background modelling’, Proc of IEEE ICIP’2003,
Barcelona, Spain (September 2003).

16 Elgamal A, Duraiswami R, Harwood D and Davis L: ‘Background
and foreground modelling using nonparametric kernel density
estimation for visual surveillance’, Proc of the IEEE, 90, No 7 (July
2002).

17 Gao X, Boult T E, Coetzee F and Ramesh V: ‘Error analysis of
background adaptation’, Proc of IEEE CVPR’2000, South Carolina,
USA, pp 503—510 (June 2000).

18 Toyama K, Krumm J, Brumitt B and Meyers B: ‘Wallflower:
principles and practice of background maintenance’, Proc of IEEE
ICCV’99, pp 255—261, Kerkyra, Greece (September 1999).

19 Cucchiara R, Grana C, Piccardi M and Prati A: ‘Detecting moving
objects, ghosts and shadows in video streams’, IEEE Trans on
Pattern Analysis and Machine Intelligence, 25, No 10, pp 1337—
42 (2003).

20 Horprasert T, Harwood D and Davis L: ‘A statistical approach for
real-time robust background subtraction and shadow detection’,
Proc of ICCV’99 FRAME-RATE Workshop (1999).

21 Bevilacqua A: ‘Effective shadow detection in traffic monitoring
applications’, Proc of WSCG’2003, Plzen-Bory, Czech Republic
(February 2003).

22 Stauffer C: ‘Estimating tracking sources and sinks’, Proc of 2nd
IEEE Workshop on Event Mining (in conjunction with CVPR’2003),
4, Madison, Wisconsin (June 2003).

23 Xu M and Ellis T J: ‘Partial observation vs. blind tracking through
occlusion’, in Proc of BMVC’2002, Cardiff, pp 777—786
(September 2002).

24 Fitzgibbon A W and Fisher R B: ‘A buyer’s guide to conic fitting’,
Proc of 5th British Machine Vision Conference, Birmingham,
pp 513—522 (1995).

25 Balcells Capellades M, Doermann D, DeMenthon D and Chellappa
R: ‘An appearance based approach for human and object
tracking’, Proc of IEEE ICIP’2003, Barcelona, Spain (September
2003).

Li-Qun Xu joined BT Research and
Venturing in 1996 as a Senior Researcher,
where he is currently a Principal
Researcher and Project Manager in the
Broadband Applications Research Centre.
His recent research interests are in the
broad areas of visual information
processing, including multimedia content
analysis and indexing, robust object
segmentation and tracking for intelligent
visual surveillance, people behaviour and
event analysis, 2-D motion analysis and
segmentation, 3-D vision techniques and
image-based rendering for collaborative

working environment, among others. He has published prolifically on
these and allied topics and holds a number of patents and pending
applications. Prior to his career with BT, he has worked as an academic
in a number of British Universities, both as a member of the research
staff and lately within the faculty between 1990 and 1996. He earned
his PhD in Information Engineering from Southeast University,
Nanjing, China, in 1988. He is a member of British Computer Society
and a member of IEEE Signal Processing and Computer Societies.

Jose-Luis Landabaso is currently a PhD
student in the Department of Signal
Theory and Communications, Technical
University of Catalunya (UPC), Spain. His
thesis direction is in the area of dynamic
visual scene understanding using a multi-
camera system. He earned his MEng
degree from UPC in June 2001. He then
worked as a student intern in Philips
Research, New York between June 2001
and February 2002, and in BT Research
and Venturing at Adastral Park between
October 2002 and April 2003. He has had
several publications related to facial

expression recognition based on MPEG-4 coding parameters, hidden
Markov models and object segmentation and tracking.

Bangjun Lei received his BSc and MSc
degree in Computer Science from Xiían
Jiaotong University, China in 1995 and
1998, respectively. He then moved to
Technical University, Delft, the Nether-
lands, in 1999, to pursue his PhD study,
where he earned his PhD degree with a
thesis entitled ‘A viewpoint adaptive
system for 3-D telepresence’ in September
2003. He joined BT Research and
Venturing as a Researcher in October
2003. His current research interest
includes advanced low-level image
processing techniques, 3-D imaging and

image-based rendering, and computer vision for intelligent visual
surveillance applications. He is a member of IEEE. 


